
- •Классификация фазовых переходов
- •Динамика фазовых переходов
- •Плотность тока и мощность
- •Закон Ома
- •1. Адиабатный процесс
- •Адиабата Пуассона
- •Вывод уравнения
- •Задача.
- •Для распределенных токов
- •Изохорный
- •Изобарный
- •Дифференциальная форма
- •2. Напряженность электрического поля
- •Принцип суперпозиции полей
- •Линии напряженности
- •Картины силовых линий
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •3. Задача.
- •3. Задача.
- •3. Задача.
Для распределенных токов
Для случая, когда источником магнитного поля являются распределенные токи, характеризуемые полем вектора плотности тока j, формула закона Био — Савара принимает вид (в системе СИ):
где j = j(r), dV - элемент объема, а интегрирование производится по всему пространству (или по всем его областям, где j≠0), r - соответствует текущей точке при интегрировании (положению элемента dV).
Векторный потенциал:
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18
Работа газа (работа при изобарном процессе, работа при изотермическом процесс, работа при адиабатном процессе).
Э.д.с. самоиндукции.
1.
Изохорный
процесс
(V=const). Диаграмма этого процесса (изохора)
в координатах р, V изображается прямой,
параллельной оси ординат (рис. 1), где
процесс 1—2 есть изохорное нагревание,
а 1—3 — изохорное охлаждение. При
изохорном процессе газ не совершает
работы над внешними телами, т. е.
Из
первого начала термодинамики (δQ=dU+δA)
для изохорного процесса следует, что
вся теплота, которая сообщается газу,
идет на увеличение его внутренней
энергии:
т.к.
CV=dUm/dt,
Тогда
для произвольной массы газа получим
(1)
Изобарный
процесс
(p=const). Диаграмма этого процесса (изобара)
в координатах р, V изображается прямой,
которая параллельна оси V. При изобарном
процессе работа газа при увеличения
объема от V1
до V2
равна
(2)
и равна площади заштрихованного
прямоугольника (рис. 2). Если использовать
уравнение Менделеева-Клапейрона для
выбранных нами двух состояний, то
и
откуда
Тогда
выражение (2) для работы изобарного
расширения примет вид
(3)
Из этого выражения вытекает
физический
смысл молярной газовой постоянной
R: если T2
—T1
= 1К, то для 1 моль газа R=A, т. е. R численно
равна работе изобарного расширения 1
моль идеального газа при нагревании
его на 1 К.
Рис.1
В
изобарном процессе при сообщении газу
массой m количества теплоты
его
внутренняя энергия возрастает на
величину (т.к. CV=dUm/dt)
При
этом газ совершит работу, определяемую
выражением (3).
Изотермический
процесс
(T=const). Изотермический процесс описывается
законом Бойля—Мариотта:
Диаграмма
этого процесса (изотерма)
в координатах р, V представляет собой
гиперболу, которая расположена на
диаграмме тем выше, чем выше температура,
при которой происходит процесс.
Исходя
из формул для работы газа и уравнения
Менделеева-Клайперона найдем работу
изотермического расширения газа:
Так
как при Т=const внутренняя энергия идеального
газа не изменяется:
то
из первого начала термодинамики
(δQ=dU+δA) следует, что для изотермического
процесса
т.
е. все количество теплоты, сообщаемое
газу, расходуется на совершение им
работы против внешних сил:
(4)
Значит, для того чтобы при
расширении газа температура не становилась
меньше, к газу в течение изотермического
процесса необходимо подводить количество
теплоты, равное внешней работе расширения.
2.Самоиндукция это процесс возникновения ЭДС в цепи обладающей индуктивностью в результате изменения тока в ней. Рассмотрим этот процесс по подробней. Самоиндукция это частный случай электромагнитной индукции. Для появления ЭДС в цепи обладающей индуктивностью необходимо чтобы эту индуктивность пронизывал переменный магнитный поток. Тогда в цепи появится ЭДС пропорциональное индуктивности и скорости изменения магнитного потока.
ЭДС самоиндукции всегда направлено встречно изменяющемуся току. То есть при увеличении тока в цепи она стремиться препятствовать нарастанию тока. Соответственно при уменьшении тока самоиндукция препятствует этому и стремится сохранить ток в контуре. Проведем такой эксперимент. Возьмём две одинаковые лампы накаливания, подключённые к источнику тока. Одна лампа подключена к источнику непосредственно, то есть напрямую. Вторая лампа подключена через большую индуктивность.
Рисунок
2 — схема опыта
При замыкании выключателя в цепи появится ток. Первая лампа загорится сразу. Поскольку току в этой цепи ничего не препятствует. Вторая же лампа загорится не сразу, а спустя некоторое время. Так как к источнику она будет подключена через большую индуктивность. Которая будет препятствовать нарастанию тока в цепи. Хотелось бы уточнить один момент. Вторая лампа, которая должна включиться с задержкой, не вспыхнет резко спустя какое-то время от момента включения. А будет, плавно разгорятся, выходя на полную яркость. Поскольку ток в индуктивности не может измениться скачком. Он в ней изменяется плавно. Теперь можно предположить, что при размыкании выключателя лампа номер два погаснет со временем, а номер один сразу. Но это не так. Обе лампы вспыхнут ярче, на коротки промежуток времени. Давайте разберемся почему. При отключении тока в катушке возникнет ЭДС самоиндукции, которая будет стремиться сохранить ток в цепи. Но поскольку обе лампы находятся в одной цепи это видно из рисунка. Они подключены друг к другу через индуктивность. Эта ЭДС будет приложена к обеим лампам. Вследствие чего они обе вспыхнут. Уточню еще один момент. После выключения лампы вспыхнут несколько ярче, чем они горели при замкнутом выключателе. Это произойдет из-за того что ЭДС самоиндукции пропорционально скорости изменения магнитного потока пронизывающего контур. Магнитный поток вызывается током в контуре. При размыкании выключателя ток изменится резко от максимального значения до нуля. Таки образом ЭДС самоиндукции может превышать ЭДС источника в разы. Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :
.
Коэффициент
пропорциональности
называется
коэффициентом
самоиндукции или
индуктивностью
контура (катушки).
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19
Теплоемкость газа. Молярные теплоемкости при изохорном процессе (Сp) и изобарном (Сv) процессах. Формула Майера.
Энергия электрического поля (конденсатора).
1. Теплоемкость идеального газа — это отношение количества теплоты, сообщенного газу, к изменению температуры δТ, которое при этом произошло.
Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.
|
Во многих случаях удобно использовать молярную теплоемкость C:
|
где M – молярная масса вещества. Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом.
При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CV – молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе (p = const).