Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по твмс мои минимум.docx
Скачиваний:
39
Добавлен:
20.09.2019
Размер:
372.34 Кб
Скачать
  1. Показательный закон распределения

О пр.3. Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью: f(x) = 0 при х < 0 и f(x) = λ∙exp( – λ∙x) при х ≥ 0, где λ – постоянная положительная величина.

Функция распределения показательного закона: F(x) = 0 при х < 0 и F(x) = 1 – exp( – λ∙x) при х ≥ 0.

Вероятность попадания в интервал (a, b) непрерывной случайной величины Х, распределённой по показательному закону, P(a < Х < b) = exp( – λ∙a) – exp( – λ∙b).

Математическое ожидание, дисперсия и среднее квадратическое отклонение показательного распределения соответственно равны: M(X) = 1/ λ, D(X) = 1/ λ2, σ(X) = 1/λ.

16 Нормальное распределение (гауссово распр-е): возникает тогда, когда на параметры случ-ой вел-ны влияют факторы, в сумме кот-рые изменяют параметры Х, но со временем всё вернётся и станет нормальным

О пр.1. Случайная вел-на Х распределена нормально с математическим ожиданием m и средним квадратическим отклонением σ: f(x) = 1/σ

Теорема 1: MXN=m

Теорема 2: DXN=σ 2

Опр.2 Нормальное распределение с параметром N(0,1) наз-ся стандартным нормальным распределением.

; Т.о. случ-я вел-на z имеет станд. нормалное распределение

Вероятность попадания случайной величины между точками a и b для нормального распределения:

функция Лапласа

Свойства ф-ии Лапласа: 1) Ф(-х)= –Ф(х) => нечётная; 2) ; 3) ; 4) x 5 => Ф(х) 1/2

18. Локальная теорема Муавра-Лапласа: Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < p < 1), событие наступит ровно k раз (безразлично в какой последовательности), приближённо равна (тем точнее, тем больше n): Pn(k) = 1/ ∙ φ(x). Здесь:φ(x) = 1/√2π ∙ exp( –x2/2 ), x = (k – np) /

φ(x) – плотность нормального распределения.

  1. npq>9

  2. φ(x) – по таблице

В случае, когда p q 0,5 рассчёты по этой ф-ле и по ф-ле Бернулли практически совпадают

Интегральная теорема Муавра-Лапласа: Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < p < 1), событие наступит не менее k1 раз и не более k2 раз, приближённо равна: P(k1; k2) = Ф(x'') – Ф(x'). Здесь: Ф(x) = 1/√2π ∙ ∫х0 exp( – t2/2 ) dt – функция Лапласа, x'' = (k2 – np) / , x' = (k1 – np) / . Функция Лапласа для положительных значений х (0 ≤ х ≤ 5) — по таблице, для значений х > 5 полагают Ф(х) = 0.5

19.Неравенство Чебышева: Если случайная величина имеет конечную дисперсию, то для любого положительного числа : P(|X – M(X)| ≥ ) < D(X)/ .

Или в другой форме: P(|X – M(X)| ,< ) ≥ 1 – D(X)/ ,

Теорема Чебышева: Если последовательность независимых случайных величин Х1, Х2, Х3, … Хn имеет конечные дисперсии, ограниченные одной и той же постоянной: D(Xi) < C, тогда для любого положительного числа справедливо рав-во: lim n→∞ Р( | 1/n ∑ni=1 Xi – M(X) | < ) = 1.

Док-во: Утвер: Для независимых случ. вел-н дисперсия их суммы равна сумме их дисперсий.

Тогда , , ,

20. Вариационный ряд – список вариант строго в порядке их возрастания. Например: 1,2,5,7,8.

Статистическим рядом распределения называется таблица, аналог закона распределения дискретной величины с заменой вероятности на относительную частоту.

X

x1

x2

xm

p*

n1/n

n2/n

nm/n

Здесь n – объём выборки, xi – выборочные значения соответствующего параметра.

Эмпирическая функция распределения: F*(x) = nx/n, где nx – число вариант, меньших х, n – объём выборки

О пр.11. Гистограммой частот (относит-ых) наз-ют ступенчатую фигуру, состоящую из прямоугольников, основанием кот-ых служит интервал длины h, а высоты равны

Опр.12. Полигоном частот (относит-ых) наз-ся график, в кот-ом по горизонтали отложены значения вариант, а по вертикале – относит-ой частоты, и точки пересечения соединятся ломаной.

21 Выборочное среднее наз-ся средняя арифметическая значений вариант выборки

Опр.14. Генеральная средняя – средняя арифметическая вариант дискретной генеральной совок-ти N. P{X=xi}=1/N

Генеральная средняя равна матем. ожиданию

Опр.15. Выборочной дисперсией наз-ся среднее арифметич. Квадратов отношений вел-ны от их среднего значения

Опр.16. Выборочным средним квадратичным отклонением называют квадратный корень из выборочной дисперсии:

Опр.17. Модой выборки наз-ся вариант с наибольшей частотой

Опр.18. Медианой выборки наз-ся её серединное значение. Если объём выборки нечётный, то медиана – серединное значение. Если объём чётный, то берётся среднее арифметическое значение 2-х центральных вариант.