
- •Содержание
- •Предисловие
- •ВвЕдение
- •1. Структура аналоговых средств измерения
- •1.1. Назначение, области применения. Принципы построения, характеристики и основные элементы аиу
- •1.2. Классификация и структурные схемы аиу
- •Электрические двигатели. Электрические двигатели, используемые в схемах регистрирующих приборов, предназначены для перемещения носителя и регистрирующего органа.
- •1.4. Информационные сигналы аиу
- •1.4.1. Основные процессы преобразования измерительных сигналов
- •1.5. Аналоговые электроизмерительные приборы с регистрирующими устройствами
- •1.5.1. Принципы построения, характеристики и узлы. Методы регистрации
- •1.5.2. Структурная схема приборов прямого действия. Погрешности приборов прямого действия
- •1.5.3. Самопишущие приборы
- •1.5.4. Самопишущие приборы обычного быстродействия (сп)
- •1.5.5. Быстродействующие самопишущие приборы (бсп)
- •1.5.6. Светолучевые осциллографы (сло)
- •1.6. Автоматические измерительные приборы
- •Компенсационный метод измерения электрических величин
- •1.6.2. Автоматические компенсаторы (типа ксп) для измерения напряжения и температуры. Типы. Схемы. Статические и динамические характеристики
- •1.6.3. Назначение автоматических электроизмерительных мостов (ксм). Мосты постоянного тока. Пределы и точность измерения
- •Технические характеристики
- •1.6.4. Мосты переменного тока. Условия равновесия. Основные типы мостов переменного тока
- •Основные типы мостов переменного тока
- •1.6.5. Автоматические мосты с регулирующими устройствами. Двухкоординатные автоматические самописцы
- •4.1. Электромеханические измерительные устройства
- •4.1.1. Магнитоэлектрические приборы. Области применения и свойства. Устройство и принцип действия приборов
- •4.1.2. Магнитные системы электроизмерительных приборов и устройств. Назначение магнитных систем. Расчет магнитных систем
- •4.1.3. Основные требования при проектировании магнитных систем
- •4.1.5. Измерительные цепи приборов
- •4.2. Электромагнитные приборы
- •4.2.1. Свойства и классификация приборов
- •4.2.2. Конструкции измерительных механизмов
- •4.2.4. Основные виды погрешности и способы уменьшения
- •4.3. Электродинамические (эд) приборы
- •4.3.1. Области применения и свойства приборов
- •4.3.2. Измерительные механизмы электродинамических приборов
- •4.3.3. Вращающий момент. Методика расчета
- •4.3.4. Измерительные цепи. Погрешности ваттметра
- •4.3.5. Порядок расчета ваттметра
- •4.4. Ферродинамические приборы
- •4.4.1. Свойства и области применения приборов
- •4.4.2. Конструкции измерительных механизмов
- •4.4.3. Измерительные цепи и погрешности
- •4.5. Электростатистические приборы
- •4.5.1. Общие сведения об измерительных механизмах. Конструкция и принцип действия приборов
- •Конструкция и принцип действия приборов
- •4.5.2. Схемы включения
- •4.5.3. Погрешности и методы компенсации
- •2: Электронные узлы измерительных каналов и автономных приборов
- •2.1. Электронные вольтметры
- •2.1.1. Общие сведения. Универсальные вольтметры
- •Универсальные вольтметры
- •2.1.2 Измерительные преобразователи переменного напряжения в постоянное
- •2.1.3. Микровольтметры постоянного тока. Милливольтметры переменного тока
- •Милливольтметры переменного тока
- •2.1.4. Импульсные вольтметры
- •2.2. Электронные осциллографы
- •2.2.1. Области применения и свойства
- •2.2.2. Характеристики электронных осциллографов и способы их определения
- •2.2.3. Классификация осциллографов и их структурные схемы
- •2.2.4. Электроннолучевая трубка (элт) с электростатическим отклонением луча
- •2.2.5. Усилители вертикального и горизонтального отклонения лучей
- •2.2.6. Генераторы развертки. Назначение. Схема. Синхронизация генераторов развертки
- •Синхронизация генераторов развертки
- •2.2.7. Вспомогательные устройства
- •Предельное значение погрешности этого метода можно определить из соотношения
- •Погрешность такого измерения
- •2.3. Электронные приборы для анализа характеристик сигналов
- •2.3.1. Анализаторы спектра. Назначение. Элементы. Характеристики
- •Аппаратурно можно получить текущий спектр сигнала
- •2.3.2. Структурные схемы анализаторов спектра
- •2.4. Измерительные генераторы
- •2.4.1. Нормируемые параметры и классификация измерительных генераторов
- •2.4.2. Иг синусоидальных сигналов. Общие характеристики
- •2.4.3. Схемы и параметры задающих генераторов синусоидальных колебаний Генераторы lc
- •Генераторы rc
- •Генераторы на биениях
- •2.4.4. Импульсные генераторы
- •2.5. Электроизмерительные приборы с оптоэлектронными отсчетными устройствами
- •2.5.1. Принцип действия оптоэлектронных приборов. Свойства электроизмерительных приборов и области их применения
- •2.5.2. Принципы построения и структурные схемы аналого-дискретных оэп
- •3. Нормирование и анализ метрологических характеристик аиу
- •3.1. Государственная система обеспечения единства измерений. Основные положения
- •3.2. Нормируемые метрологические характеристики результатов и средств измерений
- •3.3. Формы представления нормируемых характеристик. Требования гост 8.009-84
- •3.4. Абсолютная и относительная погрешности, приведенная погрешность. Основная погрешность
- •3.5. Статическая и динамическая погрешности. Класс точности
- •3.6. Динамические характеристики и принципы их коррекции
- •3.7. Методы уменьшения погрешностей аиу
- •3.7.1. Классификация методов
- •3.7.2. Стабилизация реальной характеристики преобразования
- •3.7.3. Компенсация погрешностей
- •3.7.4. Коррекция погрешностей
- •3.7.5. Фильтрация погрешностей
- •3.7.6. Уменьшение динамической погрешности
- •3.7.7. Конструктивные способы улучшения точности работы аиу
- •Список литературы
2.2.6. Генераторы развертки. Назначение. Схема. Синхронизация генераторов развертки
Для получения на экране осциллографа неподвижного изображения исследуемого сигнала на вертикальные отклоняющие пластина подается напряженнее линейно изменяющееся во времени (ЛИН). Это напряжение генерируется в электронном осциллографе генератором развертки.
Рис. 2.12. График ЛИН
Для обеспечения неподвижности изображения генератор синхронизируется исследуемым процессом. Типичный график ЛИН показан на рис.2.12. Такое напряжение U(t) характеризуется следующими параметрами:
Длительностью прямого хода Тпр периодом повторения Тр, длительностью обратного хода Тобр, временем восстановления. TУ, амплитудой Um и линейностью прямого хода Р:
,
(2.16)
В общем случае генераторы развертки осциллографа должны генерировать напряжение с высокой линейностью прямого хода, малым временем обратного хода, иметь малое время восстановления, допускать возможность синхронизации их работы, иметь высокий к.п.д. использования напряжения источника питания.
Генераторы разверток осциллографа делят: по скорости изменения ЛИН – на генераторы медленной развертки (Тр=10с – 20мс); средней скорости развертки (Тр = 0,1с –1мкс) и быстрой развертки (Тр < 1 мкс); по допустимой нелинейности развертки – на точные Р < 5%) и обычные (Р = 10% – 20%);. по способу синхронизации исследуемым процессом на генераторы непрерывной ждущей развертки; по принципу построения на генераторы с параллельным (Рис. 2.13,а) и последовательным (Рис. 2.13,б) включением коммутирующего элемента.
Рис. 2.13, а. Генератор с параллельным включением коммутирующего элемента
Рис. 2.13, б. Генератор с
последовательным включением коммутирующего элемента
В первой схеме (Рис. 2.13,а) элемент, запасающий энергию электрического тока во время прямого хода, заряжается от источника Е, а в течение обратного хода разряжается. Во второй схеме (Рис. 2.13,б) этот элемент во время прямого хода разряжается через разрядную цепь, а во время обратного хода быстро заряжается через коммутирующий элемент. Для синхронизации имеется возможность управлять моментом начала нового периода работы генератора подачей синхронизирующего импульса, например, на коммутирующий элемент.
В настоящее время предложено большое количество схем генераторов ЛИН. Характерным для большинства из них является наличие емкостной интегрирующей цепи. Для получения возможно более линейного напряжения на выходе такого генератора стараются тем или иным способом получить, возможно, более постоянным ток заряда емкости. В этом случае
,
(2.17)
если i = const, то UЛИН(t) = U0 ± Kt.
Постоянство зарядного тока можно получить применением высокого по сравнению с Um напряжения для заряда емкости, т. е. использованием для формирования ЛИН только начального участка экспоненциального напряжения (основной недостаток такой схемы – малый к.п.д. использования напряжения источника питания); применением токостабилизирующих двухполюсников и компенсационных методов с использованием положительной и отрицательной обратных связей. В современных осциллографах генераторы ЛИН, построенные по одному из перечисленных способов, управляются прямоугольными импульсами, длительность которых равна ТП. Для этой цели в каждом генераторе развертки имеется управляющее устройство УУ.
Устройство синхронизации и запуска
Мультивиб-ратор
Генератор пилообразных сигналов
Усилитель X

ВхоД
ВЫХОД
Рис. 2.14. Структурная схема генератора развертки с мультивибратором управления
В схеме УУ (рис.2.14) с мультивибратором в ждущем или автоколебательном режиме он вырабатывает прямоугольные импульсы, которые используются для управления глин. В ждущем режиме мультивибратор запускается короткими импульсами, поступающими от устройства синхронизации и запуска. В непрерывном режиме (периодическая развертка) мультивибратор синхронизируется схемой синхронизации с исследуемым сигналом. Для того, чтобы размах um ЛИН не менялся при переключении длительности развертки в генераторе, одновременно переключают время, задающее элементы мультивибратора и глин.
В схеме УУ с триггером (рис. 2.15) генератор развертки работает в ждущем режиме. Изменяя режим работы УУ с помощью резистора «стабильность», триггер можно превратить в управляющее устройство с одним устойчивым состоянием, которое соответствует прямому ходу развертки, которая в этом случае работает в непрерывном режиме.
Триггер


Генератор пилообразных сигналов
Усилитель X
Вход Выход
Устройство синхронизации
и запуска
Рис. 2.15. Структурная схема генератора развертки с триггером
Генератор ждущей развертки позволяет устанавливать длительность прямого хода, переключая только времязадающие элементы глин. Длительность импульсов УУ устанавливается автоматически благодаря триггеру. Импульс, поступающий от устройства синхронизации и запуска, переводит триггер из исходного состояния в рабочее. Линейно изменяющееся напряжение глин подается на сравнивающее устройство, выходной сигнал которого в момент достижения ЛИН определенного уровня переводит триггер в исходное состояние, после чего прекращается прямой ход развертки. На выходе триггера образуются прямоугольные управляющие импульсы, длительность которых определяется скоростью развертки. При постоянном уровне сравнения размах um не меняется при переключении времязадающих элементов глин. При этом генератор развертки «блокируется», т. е. Становится нечувствительным к запускающим импульсам.