
- •Термоэлектрические измерительные приборы.
- •Электронные аналоговые измерительные приборы.
- •Электронные цифровые измерительные приборы.
- •Метод компенсационного измерения эдс (разности потенциалов).
- •Электрический уравновешенный мост.
- •Нормирующие преобразователи электрического тока.
- •Аналоговый (конденсаторный) частотомер.
- •Электронно-счетный частотомер.
- •Электронный аналоговый осциллограф.
- •Электронные цифровые осциллографы.
- •Бинарные и многокомпонентные среды.
- •Проба анализируемой среды и ее особенности.
- •Анализаторы медико-биологических показателей.
- •Аналитический измерительный прибор.
- •Клинические аналитические измерительные системы.
- •Аналитические измерительные системы.
- •Формы сигнала анализатора.
- •Анализ гетерогенных сред.
- •Фотоколориметры.
- •Спектрофотометры.
- •Вертикальные фотометры.
- •Рефлектометрические фотометры.
- •Оптоволоконные анализаторы (оптроны и фибродатчики).
- •Чрезкожные анализаторы концентрации оксигемоглобина.
- •Чрезкожный анализатор концентрации билирубина.
- •Фотометрические ячейки для гематологических анализаторов.
- •Рефрактометры.
- •Автоматический рефрактометр.
- •Поляриметры.
- •Автоматический поляриметр.
- •Флуоресцентные анализаторы.
- •Работа фотоэлектронного умножителя.
- •Флуоресцентные ячейки для гематологических анализаторов.
- •Хемилюминесцентные анализаторы.
- •Пламенные фотометрические анализаторы.
- •Атомные абсорбционные анализаторы.
- •Гальванические газоанализаторы.
- •Анализаторы вязкости жидких сред.
- •Приборы для измерения вязкости (вязкозиметры).
- •Автоматический капиллярный вязкозиметр.
- •Ротационные вязкозиметры.
- •Фотоэлектрические капиллярные вязкозиметры.
- •Тромбоэластограф.
- •Коагулограф. (Электрокоагулограф)
- •Титрометрические анализаторы. (Титрометры)
- •Электрокондуктометрический анализатор количества форменных элементов крови. (Электрокондуктометрический гематологический газоанализатор).
- •Комбинированный гематологический анализатор.
- •Проявительный хроматографический анализ.
- •Детекторы для газовой хроматогафии.
- •Детекторы для жидкостной хроматографии.
- •Спектрофотометрический мультиволновой детектор.
- •Анализатор аминокислот.
- •Тонкослойный хроматограф.
- •Электрофоретические анализаторы.
Электрический уравновешенный мост.
(1)
(2)
(3)
Электрическим мостом принято называть 4 сопротивления, активных или реактивных, соединенных друг за другом по кольцу. Каждое из сопротивлений называется плечом моста. Плечи, имеющие общую точку, - смежные плечи моста, а плечи, не имеющие общих точек, - противоположные. dc – питающая диагональ моста, к ней подключается источник питания. bd – измерительная диагональ моста, в нее включается измерительный прибор. В уравновешенных мостах этим прибором служит 0-индикатор, например, магнитоэлектрическая система.
Мосты широко применяются для измерения сопротивлений R различных чувствительных элементов, например, фоторезисторов, тензорезисторов, терморезисторов.
Измерение с помощью уравновешенного моста осуществляется следующим образом: наблюдают за положением стрелки 0-индикатора и перемещают движок переменного резистора R до тех пор, пока стрелка не установится на нулевой отметке. Такое состояние моста – равновесие. В этом случае потенциалы точек b и d одинаковы, а через измерительную диагональ ток равен 0.
Значение R определяют по положению движка переменного резистора на шкале Шк.
Наибольшее применение имеют уравновешенные мосты постоянного тока с активными резисторами.
Состояние равновесия моста может быть описано системой уравнений (1), (2) и (3) , которую в соответствии с законом Ома можно преобразовать к виду:
(4)
(5)
(6)
;
;
(7)
(8)
Уравнение (7) является условием равновесия моста.
В положении равновесия произведение сопротивлений противоположных плеч моста равны.
Следовательно, из уравнения (7) получаем уравнение (8), из которого можно видеть, что о значении искомого R можно судить по значению переменного сопротивления R . Оно справедливо в том случае, если сопротивление проводов постоянно.
Из уравнения (7) также следует, что изменение напряжения питания моста не влияет на результат измерения.
Трехпроводная схема подключения измеряемого резистора (сопротивления) к уравновешенному мосту.
(*)
При
:
Очень часто измеряемый резистор подключается к мосту с помощью длинных проводов, поэтому могут возникать погрешности, связанные с изменением сопротивления проводов от температуры. Поэтому в уравнении (8) такое явление будет отождествляться с изменением сопротивления R .
Для исключения влияния проводов на результат измерения и применяют трехпроводную схему подключения к мосту. Если в предыдущей схеме к резистору подходят 2 провода, то в данной схеме – 3. А именно: 1 полюс источника питания также подключается к резистору R в точке С`. Используя условие равновесия моста для данной схемы, можно записать уравнение (*).
Решая последнее уравнение относительно R , и предварительно изготавливая R и R равными друг другу, можно видеть, что при всех изменениях сопротивления проводов, они не влияют на результат измерений.
Автоматические уравновешенные мосты.
Автоматический уравновешенный мост функционирует так же, как и мост с ручным уравновешением. Отличие: в качестве 0-индикатора здесь используется электронный усилитель. Причем питание уравновешенных мостов с активными сопротивлениями осуществляется от источников с переменным током. Когда из-за изменения сопротивления R возникает разбалансирование электрического моста, этот разбаланс воспринимается ЭУ, усиливается, и управляет работой реверсивный двигатель РД. Ротор двигателя механически соединен с движком резистора R (конструкция этого резистора аналогична конструкции реохорда потенциометра). Перемещение ротора двигателя будет происходить до тех пор. Пока разность потенциалов между точками b и c не станет равной 0. по положению стрелки, которая соединена с ротором, на шкале судят о значении сопротивления R .
Такие приборы выпускаются показывающими, самопишущими, одно- и многоточечными. Класс точности Λ =0,25-1,5.
Неуравновешенные электрические мосты.
Неуравновешенный мост работает специальным образом: при некотором начальном значении R с помощью переменного резистора R устанавливают равновесие моста, при всех других значениях R , например, при увеличении R , между точками b и d возникает разность потенциалов, а через прибор, включенный в диагональ bd, протекает ток. Причем, чем больше изменение R , тем больше этот ток. Т.е. для получения измерительной информации используется разбалансированность.
Ток и разбаланс,
как видно из формулы, зависят от R
и U
,
причем величина М в знаменателе выражения
также зависит от R
.
Однако, эта величина R
входит в виде суммы с другими
сопротивлениями, поэтому изменение R
мало влияет на величину М. Установлено,
что при изменении R
на 10-15% практически не изменяется линейка
зависимости между током и значением
R
.