
- •1. Понятие о Вселенной и представления об ее образовании.
- •2. Галактики во Вселенной. Галактика Млечный путь.
- •3. Образование Солнечной системы (солнце и планеты).
- •4. Эволюция солнца – прошлое, настоящее, будущее.
- •5. Гипотезы различия химического состава планет земной группы и планет-гигантов.
- •6. Луна, гипотезы происхождения. Приливы и отливы.
- •Возникновение Солнечной системы
- •Рассмотрение гипотез
- •Гипотеза центробежного отделения
- •Гипотеза захвата
- •Гипотеза совместного формирования (совместной аккреции)
- •Гипотеза испарения
- •Гипотеза многих лун
- •Гипотеза столкновения
- •Заключение
- •История
- •Терминология
- •Физика прилива Современная формулировка
- •7. Строение Земли. Внутренние сферы, их параметры, состав и свойства. Строение Земли
- •Химический состав
- •Внутреннее строение
- •Земная кора
- •Мантия Земли
- •Ядро Земли
- •Тектонические платформы
- •Географическая оболочка
- •8. Океаническая и континентальная кора, их состав, параметры и свойства.
- •Океаническая кора
- •Континентальная кора
- •Состав верхней континентальной коры
- •9. Понятие об астеносфере и ее роли в эволюции облика Земли.
- •10. Атмосфера и гидросфера – генезис и эволюция. Ледниковые периоды. Колебания уровня океана.
- •Ледниковые эры в истории Земли
- •Кайнозойская ледниковая эра
- •Хронология кайнозойских оледенений
- •11. Магнитосфера – генезис, эволюция, инверсии.
- •12. Статиграфия: история становления, стратиграфическая шкала, Эры, периоды.
- •13. Импактная гипотеза Альваресов. Роль импактов в эволюции органического мира на Земле. Прогнозы.
- •14. Дрейф континентов по Вегенеру и теория тектоники литосферных плит.
- •15. Срединно-океанические хребты, рифты, спрединг – их характеристики и механизм действия.
- •16. Субдукция, зона Беньоффа – характеристика и влияние на катастрофические события
- •17. Землетрясения, их причины. Понятия: эпицентр, гипоцентр, форшоки, афтершоки. Примеры современных катастрофических событий.
- •Введение
- •Сейсмические волны и их измерение
- •Типы сейсмических волн
- •Шкала магнитуд
- •Шкалы интенсивности
- •Шкала Медведева-Шпонхойера-Карника (msk-64)
- •Процессы, происходящие при сильных землетрясениях
- •Измерительные приборы Сейсмограф
- •Другие виды землетрясений Вулканические землетрясения
- •Техногенные землетрясения
- •[Править]Землетрясение в Японии (2011)
- •О прогнозе землетрясений
- •18. Балльность и магнитуда землетрясений. Примеры.
- •Примеры: Сычуаньское землетрясение
- •[Править]Землетрясение в Японии (2011)
- •20. Крупные и средние литосферные плиты. Прогноз изменения их положения.
- •21. Местонахождение полезных ископаемых в свете теории тектоники литосферных плит
- •22. Понятие о горных породах. Особенности формирования магматических, метаморфических и осадочных пород.
- •Связь цвета магматических горных пород и их химического состава
- •Температуры образования минералов магматических пород
- •Механизм образования минералов
- •Кислые магматические породы
- •Основные и ультраосновные породы
- •Температуры образования метаморфических горных пород
- •Механизм образования минералов в метаморфических породах
- •Образование осадочного материала
- •Перенос осадочного материала
- •Накопление осадка
- •23. Основные породообразующие минералы.
- •24. Основные отличительные диагностические свойства сульфидов, оксидов, силикатов и солей.
- •25. Магматические гп. Их генезис, классификация и диагностические признаки. Общие сведения
- •Классификация магматических горных пород
- •Карбонатиты
- •26. Интрузивные и эффузивные магматические породы. Особенности образования и примеры пород.
- •27. Осадочные породы, их генезис и характеристика. Примеры пород.
- •Механогенные осадочные породы
- •Свойства структур обломочных пород
- •28. Факторы метаморфизма.
- •29. Представления о региональном метаморфизме, законы регионального метаморфизма и примеры пород.
- •Породы регионального метаморфизма
- •30. Представления о дислокационном и контактовом метаморфизме.
- •31. Представления о почвах и почвообразовании. Появление и эволюция почв на Земле. Роль почвы в биосфере.
- •Первичное почвообразование
- •Антропогенное почвообразование
- •Значение почв в природе Почва как среда обитания живых организмов
- •Геохимические функции
- •Регуляция состава атмосферы
- •32. Учение Докучаева о факторах почвообразования.
- •33. Понятие о почвенном профиле и почвенных горизонтах. Примеры.
- •Типы строения
- •Группировка по соотношению горизонтов
- •Генетические типы профилей
- •34. Понятие об индексации почвенных горизонтов и почвенных формулах. Примеры. Индексация почвенных горизонтов
- •35. Минеральная и органическая часть почвы, их состав, состояние и свойства Минеральная часть почвы Минеральный состав
- •Гранулометрический состав
- •Органическая часть почвы
- •36. Морфологические свойства почв, их диагностические значения, методы определения.
- •37. Гранулометрический состав почв. Полевые методы его определения.
- •Фракции частиц при гранулометрическом анализе почв
- •Классификации почв по гранулометрическому составу
- •Влияние гранулометрического состава на свойства почв и пород
- •Методы определения (гранулометрия)
- •Способы выражения
- •Влияние гранулометрического состава на продуктивность растений
- •38. Понятие «структура почв». Типы почвенной структуры. Их оценка с агропроизводственных позиций.
- •Классификация структурных отдельностей
- •40. Основные морфологические критерии оценки плодородия почв.
35. Минеральная и органическая часть почвы, их состав, состояние и свойства Минеральная часть почвы Минеральный состав
Около 50—60 % объёма и до 90—97 % массы почвы составляют минеральные компоненты. Минеральный состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.
Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят названиепервичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы, пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10—15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.
Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов — каолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.
Высоко содержание минералов-оксидов и гидроксидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.
Гранулометрический состав
В почвах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) — с водным режимом.
Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.
В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (silt, 0,002—0,05 мм) частиц, по второй — глинистых (clay, <0,002 мм), по третьей — песчаных (sand, 0,05—2 мм) и находится место пересечения отрезков. Внутри треугольник разбит на участки, каждый из которых соответствует тому или иному гранулометрическому составу почвы. Тип почвообразования при этом не учитывается.