
- •1. Понятие о Вселенной и представления об ее образовании.
- •2. Галактики во Вселенной. Галактика Млечный путь.
- •3. Образование Солнечной системы (солнце и планеты).
- •4. Эволюция солнца – прошлое, настоящее, будущее.
- •5. Гипотезы различия химического состава планет земной группы и планет-гигантов.
- •6. Луна, гипотезы происхождения. Приливы и отливы.
- •Возникновение Солнечной системы
- •Рассмотрение гипотез
- •Гипотеза центробежного отделения
- •Гипотеза захвата
- •Гипотеза совместного формирования (совместной аккреции)
- •Гипотеза испарения
- •Гипотеза многих лун
- •Гипотеза столкновения
- •Заключение
- •История
- •Терминология
- •Физика прилива Современная формулировка
- •7. Строение Земли. Внутренние сферы, их параметры, состав и свойства. Строение Земли
- •Химический состав
- •Внутреннее строение
- •Земная кора
- •Мантия Земли
- •Ядро Земли
- •Тектонические платформы
- •Географическая оболочка
- •8. Океаническая и континентальная кора, их состав, параметры и свойства.
- •Океаническая кора
- •Континентальная кора
- •Состав верхней континентальной коры
- •9. Понятие об астеносфере и ее роли в эволюции облика Земли.
- •10. Атмосфера и гидросфера – генезис и эволюция. Ледниковые периоды. Колебания уровня океана.
- •Ледниковые эры в истории Земли
- •Кайнозойская ледниковая эра
- •Хронология кайнозойских оледенений
- •11. Магнитосфера – генезис, эволюция, инверсии.
- •12. Статиграфия: история становления, стратиграфическая шкала, Эры, периоды.
- •13. Импактная гипотеза Альваресов. Роль импактов в эволюции органического мира на Земле. Прогнозы.
- •14. Дрейф континентов по Вегенеру и теория тектоники литосферных плит.
- •15. Срединно-океанические хребты, рифты, спрединг – их характеристики и механизм действия.
- •16. Субдукция, зона Беньоффа – характеристика и влияние на катастрофические события
- •17. Землетрясения, их причины. Понятия: эпицентр, гипоцентр, форшоки, афтершоки. Примеры современных катастрофических событий.
- •Введение
- •Сейсмические волны и их измерение
- •Типы сейсмических волн
- •Шкала магнитуд
- •Шкалы интенсивности
- •Шкала Медведева-Шпонхойера-Карника (msk-64)
- •Процессы, происходящие при сильных землетрясениях
- •Измерительные приборы Сейсмограф
- •Другие виды землетрясений Вулканические землетрясения
- •Техногенные землетрясения
- •[Править]Землетрясение в Японии (2011)
- •О прогнозе землетрясений
- •18. Балльность и магнитуда землетрясений. Примеры.
- •Примеры: Сычуаньское землетрясение
- •[Править]Землетрясение в Японии (2011)
- •20. Крупные и средние литосферные плиты. Прогноз изменения их положения.
- •21. Местонахождение полезных ископаемых в свете теории тектоники литосферных плит
- •22. Понятие о горных породах. Особенности формирования магматических, метаморфических и осадочных пород.
- •Связь цвета магматических горных пород и их химического состава
- •Температуры образования минералов магматических пород
- •Механизм образования минералов
- •Кислые магматические породы
- •Основные и ультраосновные породы
- •Температуры образования метаморфических горных пород
- •Механизм образования минералов в метаморфических породах
- •Образование осадочного материала
- •Перенос осадочного материала
- •Накопление осадка
- •23. Основные породообразующие минералы.
- •24. Основные отличительные диагностические свойства сульфидов, оксидов, силикатов и солей.
- •25. Магматические гп. Их генезис, классификация и диагностические признаки. Общие сведения
- •Классификация магматических горных пород
- •Карбонатиты
- •26. Интрузивные и эффузивные магматические породы. Особенности образования и примеры пород.
- •27. Осадочные породы, их генезис и характеристика. Примеры пород.
- •Механогенные осадочные породы
- •Свойства структур обломочных пород
- •28. Факторы метаморфизма.
- •29. Представления о региональном метаморфизме, законы регионального метаморфизма и примеры пород.
- •Породы регионального метаморфизма
- •30. Представления о дислокационном и контактовом метаморфизме.
- •31. Представления о почвах и почвообразовании. Появление и эволюция почв на Земле. Роль почвы в биосфере.
- •Первичное почвообразование
- •Антропогенное почвообразование
- •Значение почв в природе Почва как среда обитания живых организмов
- •Геохимические функции
- •Регуляция состава атмосферы
- •32. Учение Докучаева о факторах почвообразования.
- •33. Понятие о почвенном профиле и почвенных горизонтах. Примеры.
- •Типы строения
- •Группировка по соотношению горизонтов
- •Генетические типы профилей
- •34. Понятие об индексации почвенных горизонтов и почвенных формулах. Примеры. Индексация почвенных горизонтов
- •35. Минеральная и органическая часть почвы, их состав, состояние и свойства Минеральная часть почвы Минеральный состав
- •Гранулометрический состав
- •Органическая часть почвы
- •36. Морфологические свойства почв, их диагностические значения, методы определения.
- •37. Гранулометрический состав почв. Полевые методы его определения.
- •Фракции частиц при гранулометрическом анализе почв
- •Классификации почв по гранулометрическому составу
- •Влияние гранулометрического состава на свойства почв и пород
- •Методы определения (гранулометрия)
- •Способы выражения
- •Влияние гранулометрического состава на продуктивность растений
- •38. Понятие «структура почв». Типы почвенной структуры. Их оценка с агропроизводственных позиций.
- •Классификация структурных отдельностей
- •40. Основные морфологические критерии оценки плодородия почв.
[Править]Землетрясение в Японии (2011)
Основная статья: Землетрясение в Японии (2011)
Землетрясение у восточного побережья острова Хонсю в Японии, также Великое восточнояпонское землетрясение — землетрясение магнитудой, по текущим оценкам, от 9,0[33]. до 9,1[34] произошло 11 марта 2011 года в 14:46 по местному времени. Эпицентр землетрясения был определён в точке с координатами 38,322° с. ш. 142,369° в. д. восточнее острова Хонсю, в 130 км к востоку от города Сендай и в 373 км к северо-востоку от Токио[33]. Гипоцентр наиболее разрушительного подземного толчка (произошедшего в 05:46:23 UTC) находился на глубине 32 км ниже уровня моря в Тихом океане. Землетрясение произошло на расстоянии около 70 км от ближайшей точки побережья Японии. Первоначальный подсчёт показал, что волнам цунами потребовалось от 10 до 30 минут, чтобы достичь первых пострадавших областей Японии. Через 69 минут после землетрясения цунами затопило аэропорт Сендай.
Это сильнейшее землетрясение в известной истории Японии[33] и седьмое[35], а по другим оценкам даже шестое[36], пятое[34] или четвёртое[37] по силе за всю историю сейсмических наблюдений в мире[38]. Однако по количеству жертв и масштабу разрушений оно уступает землетрясениям в Японии 1896 и 1923 (тяжелейшему по последствиям) годов.
О прогнозе землетрясений
В конце прошлого века группа известных западных сейсмологов провела сетевые дебаты[39], главным вопросом которых был «Является ли достоверный прогноз индивидуальных землетрясений реалистичной научной целью?». Все участники дискуссии, несмотря на значительные расхождения в частных вопросах, согласились с тем, что
детерминистические предсказания отдельных землетрясений с точностью, достаточной для того, чтобы можно было планировать программы эвакуации, нереальны;
по крайней мере некоторые формы вероятностного прогноза текущей сейсмической опасности, основанные на физике процесса и материалах наблюдений, могут быть оправданы.
Даже если бы точность измерений и несуществующая пока физико-математическая модель сейсмического процесса дали возможность с достаточной точностью определить место и время начала разрушения участка земной коры, магнитуда будущего землетрясения остаётся неизвестной. Дело в том, что все модели сейсмичности, воспроизводящие график повторяемости землетрясений, содержат тот или иной стохастический генератор, создающий в этих моделях динамический хаос, описываемый лишь в вероятностных терминах. Более явно источник стохастичности качественно можно описать следующим образом. Пусть распространяющийся во время землетрясения фронт разрушения подходит к участку повышенной прочности. От того, будет разрушен этот участок или нет, зависит магнитуда землетрясения. Например, если фронт разрушения пройдёт дальше, землетрясение станет катастрофическим, а если нет, останется небольшим. Исход зависит от прочности участка: если она ниже некоторого порога, разрушение пойдет по первому сценарию, а если выше, по второму. Возникает «эффект бабочки»: ничтожно малое различие в прочности или напряжениях приводит к макроскопическим последствиям, которые нельзя предсказать детерминистически, поскольку это различие меньше любой точности измерений. А предсказание места и времени землетрясения с неизвестной и, возможно, вполне безопасной магнитудой не имеет практического смысла, в отличие от расчёта вероятности того, что сильное землетрясение произойдет.
Тем не менее, китайские учёные, казалось бы, достигли огромных успехов в предсказании землетрясений — они в течение нескольких лет осуществляли мониторинг наклона поверхности, уровня грунтовых вод, а также содержание радона (газа) в горных породах. По предположению исследователей, все эти параметры, кроме сезонных изменений, а также многолетних тенденций, должны резко меняться за несколько недель или месяцев перед крупным землетрясением. Учёные предсказали землетрясение 4 февраля 1975 года в густонаселённом Ляонине, жертвами которого могли бы стать миллионы человек. Однако вскоре, как по иронии судьбы, случилось таншаньское землетрясение (8,2 по Рихтеру) 27 июля 1976 года, которое предсказано не было, и количество жертв (более 650 тысяч) было одним из самых больших в истории наблюдений.
Афтершо́к (англ. aftershock) — повторный сейсмический толчок, меньшей интенсивности по сравнению с главным сейсмическим ударом[1].
Сильные землетрясения всегда сопровождаются многочисленными афтершоками. Их количество и интенсивность со временем уменьшаются, а продолжительность проявления может длиться месяцами. Особенно велика вероятность сильных афтершоков в первые часы после главного толчка. Известно много случаев, когда поврежденные главным ударом здания рушились именно при повторных, менее сильных толчках. Афтершоки представляют угрозу при проведении спасательных работ.
Наличие афтершоков связано не столько с остаточными напряжениями непосредственно в очаге, сколько с быстрым (во время главного удара землетрясения) увеличением напряжения в окрестностях очага случившегося землетрясения из-за перераспределения напряжений. Во время главного удара землетрясения — пластической (и хрупкой) деформации пород земной коры в очаге землетрясения жёсткая плита земной коры сдвигается как целое на десятки сантиметров или даже на метры. При этом механические напряжения в очаге уменьшаются от максимальных (от уровня предела прочности) до минимальных остаточных. Зато напряжение в окрестностях очага существенно увеличивается (в результате смещения плиты), иногда приближая это напряжение к самому пределу прочности. При превышении предела прочности (в окрестностях очага главного удара) и происходят афтершоки. В результате смещения плиты механические напряжения возрастают и на большом удалении от очага (подобно тому, как это происходит в окрестностях очага). В результате такого возрастания напряжения на границах плиты могут приблизиться к пределу прочности коры по её периметру, вследствие чего после больших землетрясений — смещений по границе плиты может пройти череда индуцированных землетрясений.
Форшок — землетрясение, произошедшее до более сильного землетрясения и связанное с ним примерно общим временем и местом. Обозначение форшоков, основного землетрясения и афтершоков возможно только после всех этих событий.
Предполагается, что форшоки — часть процесса подготовки сильного землетрясения.[2] По одной из моделей всё происходит каскадно — маленькое землетрясение запускает всё большие по силе, что продолжается вплоть до основного толчка. Тем не менее, анализ некоторых форшоков показал, что, вместе с афтершоками, они — часть единого процесса разрядки в зоне разлома. Это подтверждается наблюдаемой взаимосвязью между частотой форшоков и частотой афтершоков у землетрясения
Эпице́нтр — перпендикулярная проекция центра подземного или надземного события — землетрясения или атомного взрыва — на поверхность Земли.
Гипоцентр — центральная точка очага землетрясения. В случае протяжённого очага под гипоцентром понимают точку начала вспарывания разрыва.
Глубина залегания гипоцентра обычно колеблется от нескольких километров до 700 километров. В верхней части земной коры (до 20 километров) гипоцентры появляются в результате хрупких деформаций в толще пород. В более глубоких слоях гипоцентры возникают на общем фоне преобладания пластических деформаций.