
- •Введение
- •Предмет молекулярной физики
- •2. Массы атомов и молекул. Количество вещества
- •Примеры
- •Молекулярные силы
- •4. Агрегатные состояния вещества. Особенности теплового движения в различных агрегатных состояниях вещества
- •Глава 1. Основы кинетической теории идеального газа
- •Модель идеального газа
- •1.2. Равновесные состояния и процессы
- •1.3. Распределение молекул газа, находящегося в состоянии равновесия, по направлениям движения
- •Примеры
- •1.4. Число ударов молекул о стенку сосуда
- •1.5. Основное уравнение кинетической теории газов для давления
- •1.6 Температура и её измерение. Опытные температурные шкалы.
- •1.7 Идеально-газовая шкала температур.
- •2. Измерение давления газа при постоянном объёме производится с большей точностью, чем измерение объёма при постоянном давлении.
- •Температура - мера средней кинетической энергии поступательного движения молекул.
- •1.9 Уравнение Менделеева-Клапейрона. Следствия из этого уравнения.
- •Примеры
Глава 1. Основы кинетической теории идеального газа
Модель идеального газа
Наиболее простой теоретической моделью газа является идеальный газ. В этой модели пренебрегают размерами и взаимодействиями молекул и учитывают лишь их упругие столкновения. Более реальной является расширенная модель идеального газа, в которой молекулы представляются упругими сферами с конечным диаметром d, а взаимодействие по-прежнему учитывается только при непосредственном упругом столкновении молекул.
Установим критерий, следуя которому можно установить, когда газ можно рассматривать как идеальный. Ясно, что газ будет идеальным, если расстояние r между его молекулами такое, что силой взаимодействия между ними на этом расстоянии можно пренебречь. Как отмечалось в пункте 3 Введения, силы взаимодействия между молекулами быстро убывают с расстоянием r и уже на расстояниях в несколько диаметров d молекулы пренебрежимо малы. Поэтому условие идеальности газа в расширенном понимании можно записать в виде:
r>>d (1.1.13)
Расстояние
r
нетрудно выразить через такой важный
параметр газа как концентрацию
n=N/V,
здесь
N
–
число частиц в газе, а
V
–
его объем. В самом деле, если газ находится
в равновесии при отсутствии внешних
полей его молекулы будут равномерно
распределены в объеме
V
м3
,
и тогда на ребре куба длиной
1
м расположится
молекул. Следовательно, среднее расстояние
между молекулами составит
(1.1.14)
Из соотношений (1.1.13) и (1.1.14) следует, что критерий идеальности газа можно представить следующим образом
nd 3<< 1 , nd 3 – безразмерный параметр (1.1.15)
Учитывая, что из формул (В.9) и (В.10) число частиц в газе N=mNA / , концентрацию можно выразить через плотность газа:
(1.1.16)
где = m/V - плотность газа
Выражение (1.1.16) позволяет записать критерий идеальности газа (1.1.15) в эквивалентной форме
NAd3/<<1 (1.1.17)
Пример
1. Является ли азот N2 при нормальных условиях идеальным газом? Каково расстояние между молекулами?
Решение: При нормальных условиях плотность азота ρ=1,251 кг/м3 Поэтому по формуле (1.16) концентрация азота
n = ρNA / =1,251·6,02·1023 /28·10-3=2,7·1025 1/м3
Диаметр молекулы азота возьмем из таблицы 1 :d = 3,16·10 -10 м. Тогда n d3 = 2,7·1025 · 52,7·10-30 = 0,8·10-3 , что является величиной значительно меньшей единицы. Таким образом, условие (1.1.15) выполнено и азот при нормальных условиях является идеальным газом.
При
этом расстояние между молекулами
что
более чем в десять раз больше диаметра
молекулы азота (см.табл.1), а силы притяжения
на таких расстояниях пренебрежимо малы
1.2. Равновесные состояния и процессы
Рассмотрим
систему молекул, занимающую объем V.
Состояние этой системы с термодинамической
точки зрения описывается набором
макроскопических параметров, значение
которых устанавливается макроскопическими
измерениями. Различают внутренние и
внешние параметры. Примером внутренних
параметров являются давление P,
температура T,
внутренняя энергия, поляризованность,
намагниченность и т.д. Внутренние
параметры описывают внутреннее состояние
молекул. Рассматриваемая система молекул
может взаимодействовать с окружающей
средой, т.е. с внешними по отношению
к ней телами, и обмениваться с ней
различными видами энергии. Этими
внешними телами могут быть, например,
заряженные тела, тела, по которым текут
токи, тяготеющие массы, источники тепла
и т.п., величина воздействия которых на
рассматриваемую систему молекул
определяется значениями давления,
температуры, напряженностей электрического
,
магнитного
,
гравитационного
полей и т.д. Величины
и т.п. называют внешними параметрами.
Одним из важнейших постулатов молекулярной физики является утверждение о существовании равновесия - состояния, в которое, как показывает опыт, самопроизвольно переходит всякая система молекул, если только внешние условия постоянны. Состояние системы молекул называют равновесным, если при неизменных внешних условиях внутренние параметры, характеризующие ее состояние, не зависят от времени. В состоянии равновесия в системе прекращаются все макроскопические процессы, связанные с переносом тепла (теплопроводность) и вещества (диффузия), останавливаются химические реакции, не имеют места фазовые переходы из одного агрегатного состояния в другое и т.п., т е. не происходят самопроизвольные тепловые процессы и все части системы частиц не совершают никакого макроскопического движения. Однако молекулы, составляющие равновесную систему не прекращают своих хаотических микроскопических движений.
Таким образом, макроскопические процессы в термодинамической системе, находящейся в равновесии, не протекают. Однако, если величину хотя бы одного из внутренних параметров изменить внешним воздействием в одной из частей системы, находившейся до этого в равновесии, затем изолировать ее от внешней среды и представить самой себе, как то, как показывает опыт, в течение определенного промежутка времени, называемого временем релаксации, она перейдет в равновесное состояние. Причем каждый внутренний параметр имеет свое время релаксации, а наибольшее из этих времен, определяет время релаксации системы. Поясним это на примере.
Пусть
газ находится в равновесии под поршнем
в цилиндрическом сосуде объема V.
Газ в этих условиях, очевидно, будет
находиться в равновесии, если внешнее
давление на поршень равно внутреннему
давлению газа (механическое равновесие),
температуры газа и внешней среды
одинаковы (тепловое равновесие), а
внешние поля отсутствуют, (или постоянны
во времени). При отсутствии внешних
полей давление и температура будут
одинаковыми в любой точке объема V,
занимаемого газом, характеризуя его в
целом. Этому равновесному состоянию
соответствует вполне определенная
точка на P,V
- диаграмме (или на V,T
или на P,T
- диаграммах) Будем сжимать газ,
вдвигая поршень с конечной скоростью
υ,
Сначала плотность и давление газа
увеличатся вблизи поршня. Кроме того,
молекулы слоя газа, прилегающие к поршню,
приобретут дополнительную кинетическую
энергию от движущегося поршня, что
приведет к увеличению температуры
этого слоя. Сжатый у поршня газ станет
распространяться со скоростью звука
υЗ;
с такой же, по порядку величины, скоростью
будет выравниваться давление в цилиндре.
Температура же в сжатой части "станет
выравниваться" со скоростью "тепловой
волны" υТ,
которая, как известно из опыта, значительно
меньше скорости звука. Поэтому, чтобы
процесс выравнивания и температуры и
давления успевал произойти по всему
объему, занятому газом до следующего
сжатия, очевидно, необходимо, чтобы
скорость движения поршня была значительно
меньше и скорости звука и скорости
"тепловой волны", т.е. υ
<< υT.
Последнее условие можно записать в
эквивалентном виде:
,
где
-
скорость изменения температуры слоя
газа, прилегающего к поршню,
за счет
движения поршня, а
-
скорость изменения той же величины при
релаксации. Если же скорость поршня
бесконечно мала, то тем более внутренние
параметры газа будут от одного бесконечно
малого внешнего воздействия до другого
успевать принимать значения одинаковые
по всему объему и, таким образом, газ в
любой момент времени будет находиться
в равновесии.
* Если газ находится в постоянном (независящем от времени) внешнем силовом поле (например, в поле тяжести), то давление будет постоянно в каждой точке объема V, но закономерно изменяется от точки к точке (см.§ 1.11). В этом случае равновесному состоянию газа соответствует вполне определенная точка только на V,T - диаграмме.
Эти рассуждения позволяют ввести определение равновесного процесса. Равновесным называют процесс, представляющий собой непрерывную последовательность равновесных состояний системы молекул. Таким образом, равновесный процесс должен быть бесконечно медленным. Неравновесным называют процесс, при протекании которого система молекул не находится в состоянии равновесия, т.е. при протекании процесса различные части системы имеют различные значения температуры, давления, плотности, концентрации и т.п. Неравновесный процесс проходит последовательность неравновесных состояний, каждое из которых нельзя описать постоянными по всему объему давлением, температурой и т.п. Поэтому неравновесные процессы, в отличие от равновесных, нельзя изобразить графически ни на одной из диаграмм: P-V, T-V или P-T
Состояние термодинамического равновесия, как показывает опыт, описывается небольшим числом макроскопических параметров, причем они не являются независимыми, а связаны некоторым уравнением, которое называют уравнением состояния. К примеру, поведение газов, жидкостей и твердых тел в равновесном состоянии при отсутствии внешних силовых полей описывается только тремя параметрами: давлением P, температурой T и объемом V, которые закономерно связаны уравнением состояния f(P,T,V)=0. При этом вид этого уравнения зависит не только от агрегатного состояния, но и от химического состава, рассматриваемой системы молекул. Исключением является уравнение состояния идеального газа, которое независимо от химического состава имеет один и тот же вид: PV=νRT. Оставаясь в рамках термодинамики невозможно теоретически получить конкретный вид уравнения состояния. Термодинамика заимствует его или из опыта, или из статистической теории, где это уравнение принципиально может быть найдено, но представляет весьма сложную математическую задачу, решенную лишь для небольшого числа простейших систем молекул.