Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
150
Добавлен:
02.05.2014
Размер:
1.28 Mб
Скачать

4) Импликация. Импликацией двух высказываний p и q называется высказывание, истинное тогда и только тогда, когда высказывание р истинно, а q – ложно.

Обозначается PQ (или РQ). Высказывание Р называется посылкой импликации, а высказывание Q – следствием.

P

Q

PQ

И

И

И

И

Л

Л

Л

И

И

Л

Л

И

5) Эквиваленция. Эквиваленцией двух высказываний p и q называется высказывание, истинное тогда и только тогда, когда истинности высказываний совпадают.

Обозначается РQ или РQ.

P

Q

PQ

И

И

И

И

Л

Л

Л

И

Л

Л

Л

И

С помощью этих основных таблиц истинности можно составлять таблицы истинности сложных формул.

Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы  и .

Составим таблицы истинности для каждой формулы:

p

r

(pr)

И

И

Л

И

И

И

Л

Л

Л

И

Л

И

И

Л

Л

Л

Л

И

Л

Л

p

r

И

И

Л

Л

Л

И

И

Л

Л

И

И

И

Л

И

И

Л

И

И

Л

Л

И

И

И

И

Данные формулы не являются эквивалентными.

Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы  и .

Составим таблицы истинности для заданных формул.

p

q

r

pq

(pq)r

И

И

И

И

И

И

И

Л

И

И

И

Л

И

Л

И

И

Л

Л

Л

Л

Л

И

И

Л

И

Л

И

Л

Л

Л

Л

Л

И

И

И

Л

Л

Л

И

И

p

q

r

pq

qp

(pq)(qp)

(pq)(qp)r

И

И

И

И

И

И

И

И

И

Л

И

И

И

И

И

Л

И

Л

И

И

И

И

Л

Л

Л

И

И

И

Л

И

И

И

Л

И

И

Л

И

Л

И

Л

И

И

Л

Л

И

И

И

И

И

Л

Л

Л

И

И

И

И

Из составленных таблиц видно, что данные формулы не равносильны.

Основные равносильности.

Для любых формул А, В и С справедливы следующие равносильности:

A & B  B & A; A & A  A; A & (B & C)  (A & B) & C;

A  B  B  A; A  A  A; A  (B  C)  (A  B)  C;

A  (B & C)  (A  B) & (A  C); A & (B  C)  (A & B)  (A & C);

A & (A  B)  A; A  (A & B)  A; A  A; (A & B)  A  B;

A  (A & B)  (A & B); A  (A  B) & (A  B);

Булевы функции.

Определение. Булевой функцией f(X1, X2, …, Xn) называется называется произвольная n – местная функция, аргументы и значения которой принадлежат множеству {0, 1}.

Вообще говоря между логическими высказываниями, логическими связками и булевыми функциями просматривается явная аналогия. Если логические функции могут принимать значения истинно или ложно, то для булевой функции аналогами этих значений будут значения 0 или 1.

Для булевых функций также можно составить таблицы значений, соответствующим основным логическим операциям.

X1

X2

X1

X1&X2

X1X2

X1X2

X1X2

1

1

0

1

1

1

1

1

0

0

0

1

0

0

0

1

1

0

1

1

0

0

0

1

0

0

1

1