
- •1. Электроэнергетическая система, электрическая сеть, их назначение.
- •2.Классификация электрических сетей.
- •3.Классификация электрических сетей по выполняемым функциям. Системообразующие, питающие, распределительные сети.
- •4.Объединенные энергосистемы, их преимущества.
- •5.Обозначения основных элементов электрической сети (лэп, силовых трансформаторов, проводов кабельных линий).
- •6.Режимы и параметры системы и сети.
- •7.Устойчивость системы электроснабжения.
- •8.Схемы замещения сети. Назначение. Продольные и поперечные ветви схем замещения.
- •9.Категории надежности электроснабжения.
- •10.Основные конструкции линий электрических сетей
- •11.Перечислите основные элементы вл и их назначение.
- •12.Каким образом маркируются опоры и провода вл?
- •13.Назовите основные элементы кл и их назначение.
- •14.Каким образом маркируются силовые трансформаторы?
- •15.Схема замещения вл 110 кВ длиной 300-400 км.
- •1 6.Схемы замещения линий электропередач вл 35 кВ и менее.
- •17.Схема замещения кл 110 кВ.
- •18.Определение параметров схемы замещения лэп.
- •19.Лэп как элемент электрической сети. Погонные параметры линий.
- •Погонные (удельные) параметры линий
- •20.Явление короны в линиях электропередач.
- •21.Зарядная мощность линии.
- •22.Применение транспозиции проводов.
- •23.Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии.
- •24.Построение векторной диаграммы токов и напряжений по расчету режима лэп при заданном токе нагрузки.
- •25.Расчет режима лэп при заданной мощности нагрузки и напряжении в конце линии.
- •26.Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии.
- •27.Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии. Использование уравнений узловых напряжений.
- •28.Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии. Приближенный расчет в два этапа.
- •29.Падение и потеря напряжения в лэп. Векторная диграмма.
- •30.Критерии предварительного и окончательного выбора вариантов построения сети.
- •31.Схема замещения двухобмоточного трансформатора.
- •32.Определение параметров схемы замещения двухобмоточного трансформатора.
- •33.Опыт короткого замыкания для двухобмоточного трансформатора.
- •34.Опыт холостого хода для двухобмоточного трансформатора.
- •35.Параллельная работа n одинаковых двухобмоточных трансформаторов.
- •3 6.Схема замещения трехобмоточного трансформатора.
- •37.Определение параметров схемы замещения трехобмоточного трансформатора.
- •38.Виды исполнений трехобмоточных трансформаторов.
- •39.Схема замещения трансформатора с расщепленной обмоткой низшего напряжения.
- •40.Определение параметров схемы замещения трансформатора с расщепленной обмоткой низшего напряжения.
- •41.Обозначение автотрансформаторов. Схема соединения обмоток автотрансформатора.
- •42.Определение параметров схемы замещения автотрансформатора.
- •43.Перечислите области применения двух- и трехобмоточных трансформаторов и автотрансформаторов.
- •44.Показатели качества электроэнергии.
- •45.Влияние качества электроэнергии на работу электрических аппаратов.
- •46.Графики нагрузок.
- •47.Чем обусловливается технико-экономический ущерб от перерывов электроснабжения потребителей?
8.Схемы замещения сети. Назначение. Продольные и поперечные ветви схем замещения.
Электрическая сеть состоит из разных элементов имеющих каждый свое назначение и конструктивное выполнение. Каждый из участков электрической сети характеризуется одинаковым набором параметров (r, x, g, b, Kt ).
r – активное сопротивление, Ом;
x – реактивное сопротивление, Ом;
g – активная проводимость, См;
b – реактивная проводимость, См;
Kt – коэффициент трансформации.
Параметры отражают характерные свойства элементов сети и различаются только количественно.
Для количественного определения свойств элементов электрической сети составляется схема замещения. На ней указывают все параметры, определяющие состояние электрической сети. Схемы замещения сети составляются из схем замещения отдельных элементов, они отличаются от принципиальных схем соединения этих элементов.
Принципиальные схемы соединений (схемы коммутации) нужны только для определения направления передачи электрической энергии и степени резервирования питания потребителей. В них каждый элемент сети имеет изображение, отражающее его действие в решении задачи электроснабжения.
Схема замещения сети составляется для выполнения расчетов рабочих режимов. Каждый элемент сети в ней может отражаться несколькими подэлементами.
При характеристике симметричных рабочих режимов схемы замещения составляются на одну фазу трехфазной сети, общей является нейтраль цепи.
Потери активной мощности отражаются активными сопротивлениями (r) или проводимостями (g). Потери реактивной мощности отражаются реактивными (индуктивными) сопротивлениями или проводимостями. Генерация реактивной мощности отражается отрицательными реактивными емкостными сопротивлениями или проводимостями.
Различают продольные и поперечные ветви схем замещения. Продольными называются ветви, по которым проходит ток нагрузки. Потери мощности в этих ветвях определяются нагрузочным током.
Поперечными называются ветви, которые включены на полное напряжение (непосредственно соединены с нейтралью схемы). Потери мощности в этих ветвях определяются подведенным напряжением.
Особо отражается на схемах замещения явление трансформации. Это относится к сетям, состоящим из участков разных номинальных напряжений и рассматриваемых вместе.
Элемент трансформации отражает факт изменения параметров режима - напряжений и токов. Значения полной мощности при этом не изменяются (потери в трансформаторах отражаются другими элементами схемы).
Особыми являются и элементы, отражающие работу потребителей и пунктов питания. Они отражают факт потребления и генерации мощности, их представляют активными элементами схемы – нагрузками. При этом генерация мощности рассматривается как отрицательная нагрузка. Совокупность нагрузок определяет режим сети.
9.Категории надежности электроснабжения.
По надежности электроснабжения приемники электроэнергии разделяют на три категории.Электроприемниками первой категории являются электроприемники, перерыв в работе которых может привести к тяжелым последствиям: угрозе жизни людей, крупному материальному ущербу, порче технологического оборудования, массовому браку в производимой продукции, сбою в сложном технологическом процессе, срывам в работе коммунального хозяйства. К особой группе внутри первой категории электроснабжения относятся электроприемники, постоянная работа которых нужна для штатной остановки производства при спасении людей, предотвращении взрывов, возгораний и порчи дорого оборудования. Электроприемниками второй категории являются электроприемники, перерыв в работе которых ведет к сбоям в отгрузке продукции, простоям персонала, машин и механизмов, сбою нормальной жизнедеятельности населения. К электроприемникам третьей категории относятся все прочие электроприемники. Электроприемники 1 категории электроснабжения надо обеспечивать электричеством от двух независимых источников питания. Два ввода взаимно страхуют друг друга и создают резерв электроснабжения. В случае отказа одного ввода, моментально автоматически подключается другой. Перебой в питании допустим лишь на время автоматического переключения вводов. Для особой группы первой категории электроснабжения должен быть предусмотрен третий независимый источник электропитания (аккумулятор, дизельный генераторы и т.п.). Электроприемники 2 категории электроснабжения также рекомендуется запитывать от двух независимых источников питания. При отсутствии напряжения на первом вводе второй ввод включается вручную дежурным или членом аварийной бригады. Для воздушной линии допустимо использовать одну линию с возможностью ремонта в течении 24 часов. Для второй категории электроснабжения возможно питание по одной кабельной линии из нескольких кабелей от одного аппарата. При возможности замены трансформатора за 24 часа допустима запитка от одного трансформатора. Электроприемники 3 категории электроснабжения могут обеспечиваться электроэнергией от одного источника питания при возможности ремонта вышедших из строя узлов за сутки.