
- •1 Основные понятия и определения
- •2 Основные принципы и этапы разработки машин
- •3 Требования к машинам и критерии их качества
- •4 Условия нормальной работы деталей и машин
- •5 Общие принципы прочностных расчётов
- •6 Классификация деталей машин
- •Передачи
- •7 Передачи зацеплением
- •8 Критерии расчёта эвольвентных зубьев
- •9 Расчёт зубьев на контактную выносливость
- •10 Выбор материалов зубчатых передач и вида термообработки
- •11 Расчет допускаемых напряжений
- •12 Допускаемые напряжения изгиба.
- •13 Проектный расчёт закрытой цилиндрической зубчатой передачи
- •14 Геометрический расчёт закрытой цилиндрической передачи
- •15 Проверочный расчёт закрытой цилиндрической передачи
- •16 Проверка прочности зубьев по напряжениям изгиба.
- •17 Планетарные зубчатые передачи
- •18 Волновые зубчатые передачи
- •19 Зацепления новикова
- •20 Конические зубчатые передачи
- •21 Расчёт закрытой конической зубчатой передачи
- •22 Проверочный расчёт.
- •23 Червячные передачи
- •24 Фрикционные передачи
- •25 Ременные передачи
- •26 Порядок проектного расчёта плоскоременной передачи
- •27 Порядок проектного расчёта клиноременной передачи
- •28 Валы и оси
- •29 Все валы в обязательном порядке рассчитывают на объёмную прочность.
- •3 0 Расчёт вала на выносливость
- •31 Подшипники скольжения
- •32 Подшипники качения
- •33 Подшипники качения классифицируются
- •34 Расчёт номинальной долговечности подшипника
- •35 Муфты
- •36 Жёсткие муфты
- •37 Компенсирующие муфты
- •38 Упругие муфты
- •39 Фрикционные муфты
- •40 Шпоночные соединения
- •41 Шлицевые соединения
- •Расчет шлицевых соединений
- •42 Сварные соединения
- •Эти виды швов в различных сочетаниях применяются в разных соединениях.
- •С оединения внахлёстку выполняются лобовыми, фланговыми и косыми швами.
- •43 Заклёпочные соединения
- •44 Резьбовые соединения
- •Известны следующие виды стопорения.
- •47 Всё многообразие компоновок резьбовых соединений может быть сведено к трём простейшим расчётным схемам.
- •46Расчёт на прочность резьбовых соединений
4 Условия нормальной работы деталей и машин
Успешная работа деталей и машин заключается в обеспечении надёжности и работоспособности при заданных нагрузках.
НАДЁЖНОСТЬЮ называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования.
Надежность является сложным свойством, которое состоит из сочетаний следующих частных свойств: безотказности, долговечности, ремонтопригодности и сохраняемости.
БЕЗОТКАЗНОСТЬ – способность сохранять свои эксплуатационные показатели в течение заданной наработки без вынужденных перерывов.
ДОЛГОВЕЧНОСТЬ – способность сохранять заданные показатели до предельного состояния с необходимыми перерывами для ремонтов и технического обслуживания.
РЕМОНТОПРИГОДНОСТЬ – приспособленность изделия к предупреждению, обнаружению и устранению отказов и неисправностей посредством техобслуживания и ремонта.
СОХРАНЯЕМОСТЬ – способность сохранять требуемые эксплуатационные показатели после установленного срока хранения и транспортирования.
Каждое из частных свойств количественно оценивается показателями надежности.
Особенностью проблемы надежности является ее связь со всеми жизненными циклами машины и их деталей, начиная с момента формирования заявки на разработку и заканчивая ее списанием. Каждый из жизненных циклов вносит свою лепту в решение надежности передачи. Обеспечение надежности на стадии проектирования и изготовления непосредственно сказывается на эксплуатационных и технико-экономических показателях машин.
Надежность изделия закладывается на стадии их проектирования. Она зависит от применения современных методов расчета и проектирования, основанных на теории вероятности и математической статистики с применением ЭВМ и САПР, конструкции составных частей передачи, материалов деталей и методов их упрочнения, способов защиты от внешней среды, системы смазки, приспособленности к сохранности и проведению ТО.
Надежность обеспечивают в процессе изготовления деталей и их сборки за счет достижения необходимой точности размеров, применения прогрессивных упрочняющих технологий и технологических мероприятий, направленных на обеспечения технических требований.
Надежность реализуется в процессе эксплуатации и зависит от скоростных и нагрузочных режимов работы, системы технического обслуживания и других эксплуатационных факторов. Надёжность трудно рассчитать количественно, она обычно оценивается как вероятность безотказной работы на основании статистики эксплуатации группы идентичных машин.
Надежность характеризуется следующими состояниями: работоспособное, исправное и неисправное.
РАБОТОСПОСОБНОСТЬ – это состояние объекта, при котором значение всех параметров выполняемых функции, соответствуют требованиям нормативно-технической или конструкторской документации. Оценочными качественными показателями работоспособности являются: прочность, жесткость, износо-коррозионная стойкость, тепло-хладо-виброустойчивость, стойкость к старению.
ПРОЧНОСТЬ – это способность деталей машин выполнять свои функции в пределах предусмотренных нагрузок без пластических деформации и разрушения. Различают статическую и усталостную прочность деталей. Нарушение статической прочности происходит тогда, когда величина рабочих напряжений превышает предел статической прочности материала. Обычно это связано с перегрузками. Усталостные поломки детали вызываются длительным действием переменных напряжений, величина которых превышает характеристики усталостной прочности материала (например, ).
ЖЁСТКОСТЬ – способность детали сопротивляться любой деформации;
ИЗНОСОСТОЙКОСТЬ – способность сохранять первоначальную форму своей поверхности, сопротивляясь износу;
ТЕПЛОСТОЙКОСТЬ – способность сохранять свои свойства при действии высоких температур;
ВИБРОУСТОЙЧИВОСТЬ – способность работать в нужном диапазоне режимов без недопустимых колебаний.
При расчете и проектировании деталей обычно используют один или два критерия, а остальные критерии удовлетворяются автоматически или не имеют практического значения для данных деталей.
При всей значимости всех описанных критериев, нетрудно заметить, что ПРОЧНОСТЬ ЯВЛЯЕТСЯ ВАЖНЕЙШИМ КРИТЕРИЕМ РАБОТОСПОСОБНОСТИ И НАДЁЖНОСТИ.
Невыполнение условия прочности автоматически делает бессмысленными все другие требования и критерии качества машин.