
- •Бельфер Рувим Абрамович
- •Технический редактор е. Зорин
- •Глава 3. Физический уровень сети пакетной коммутации 46
- •Глава 4. Информационные процессы на канальном уровне сети х.25 59
- •Глава 5. Структурные схемы программного обеспечения процедуры управления потоками сети X.25 73
- •Глава 6. Информационные процессы на сетевом уровне сети X.25 121
- •Глава 7. Структурные схемы программного обеспечения функций сетевого уровня сети X.25 130
- •Глава 8. Сеть Frame Relay 152
- •Глава 9. Сеть atm. Физический уровень 166
- •Глава 10. Сеть atm. Канальный уровень 178
- •Глава 11. Первичные сети уплотненного волнового мультиплексирования 192
- •Глава 12. Ip-сети. Стек протоколов tcp/ip и их функции 196
- •Глава 13. Ip-сети. Межсетевой уровень. Протоколы безопасности 204
- •Глава 15. Сети mpls 237
- •Глава 16. Виртуальные частные сети 253
- •Глава 18. Ip-телефония 297
- •Глава 19. Управление сетью сигнализации окс№7 321
- •Глава 20. Интеллектуальные сети 332
- •Глава 21. Сети стандарта gsm 346
- •Глава 22. Система окс№7 в gsm. Информационная безопасность окс№7 в ссоп 367
- •Глава 23. Сети сотовой связи стандартов gprs, edge и umts 384
- •Глава 24. Беспроводные локальные сети стандартов 802.11 416
- •Глава 25. Сети WiMax и lte 433
- •Глава 8. Сеть Frame Relay
- •Глава 9. Сеть atm. Физический уровень
- •Глава 10. Сеть atm. Канальный уровень
- •Глава 11. Первичные сети уплотненного волнового мультиплексирования
- •Глава 12. Ip-сети. Стек протоколов tcp/ip и их функции
- •Глава 13. Ip-сети. Межсетевой уровень. Протоколы безопасности
- •Глава 18. Ip-телефония
- •Глава 19. Управление сетью сигнализации окс№7
- •Глава 20. Интеллектуальные сети
- •Глава 21. Сети стандарта gsm
- •Глава 22. Система окс№7 в gsm. Информационная безопасность окс№7 в ссоп России
- •22.2.1. Вызов мобильной станции из ТфОп/isdn и обеспечение защиты приватных данных местоположения абонента-роумера
- •Глава 23. Сети сотовой связи стандартов gprs, edge и umts
- •Глава 24. Беспроводные локальные сети стандартов 802.11
- •Глава 25. Сети WiMax и lte
- •Глава 26. Самоорганизующиеся сети son
- •Глава 1. Единая сеть электросвязи России и актуальность информационной безопасности сетей связи
- •1.1. Роль и место есэ
- •1.2. Классификация сетей связи
- •1.3. Иерархический принцип построения ТфОп и gsm России
- •1.4. Актуальность информационной безопасности сетей связи
- •Глава 2. Стек протоколов сети пакетной коммутации X.25. Шифрование информации в сети
- •2.1. Многоуровневый принцип построения сети
- •2.2. Службы с установлением и без установления соединений, надежные и ненадежные соединения
- •2.3. Пакетная коммутация
- •2.4. Стек протокола сети пакетной коммутации стандарта X.25
- •2.5. Шифрование сообщений в сети пакетной коммутации
- •Глава 3. Физический уровень сети пакетной коммутации
- •3.1. Архитектура физического уровня
- •3.2. Физическая среда передачи информации
- •3.3. Аналоговая и цифровая связь
- •3.4. Модем и цифровая абонентская линия adsl
- •3.5. Аналого-цифровое преобразование
- •3.6. Цифровое кодирование и синхронизация
- •3.7. Частотное и временное мультиплексирование
- •3.7.1. Частотное мультиплексирование
- •3.7.2. Методы построения аппаратуры частотного мультиплексирования
- •3.7.3. Временное мультиплексирование
- •Глава 4. Информационные процессы на канальном уровне сети х.25
- •4.1. Временная диаграмма последовательности обмена кадрами
- •4.2. Формат кадра
- •4.3. Восстановление информационных кадров
- •4.4. Обнаружение ошибок с помощью избыточного циклического кода
- •4.4.1. Пример с использованием арифметики по модулю 2
- •4.4.2. Пример с использованием полинома
- •4.4.3. Пример аппаратной реализации
- •Глава 5. Структурные схемы программного обеспечения процедуры управления потоками сети X.25
- •5.1. Структурная схема организации по процедуры управления потоками сети х.25
- •5.2. Структурные схемы фоновых программ
- •5.2.1. Основные положения составления по. Структурная схема р1пд «Запрос и прием очередного пакета с 3 уровня»
- •5.2.2. Структурная схема программы р2пд - «Подготовка к передаче очередного «I» кадра в канал»
- •5.2.3. Структурные схемы программы р1пм - «Обработка принятых кадров «I»» и программы р2пм – «Обработка принятого кадра rr»
- •5.2.4. Структурная схема программы p2пм - «Обработка принятого кадра rr»
- •5.2.5. Структурные схемы программ p4пд - «Передача кадра rr» и р5пд – «Передача кадра rej»
- •5.2.6. Структурная схема программы р3пм - «Обработка принятого кадра отрицательной квитанции rej»
- •5.2.7. Структурная схема программы р3пд - «Подготовка к передаче «I» кадра по rej»
- •5.2.8. Структурная схема программы р6пд - «Анализ перехода в режим повторения передачи кадра по таймеру»
- •5.2.9. Структурная схема программы р7пд - «Подготовка к передаче «I» кадра по таймеру»
- •5.2.10. Структурная схема программы р4пм - «Установление и снятие запрета на передачу «I» кадров»
- •Программа p1
- •1.2. Программа p2
- •1.3. Программа p3
- •1.4. Программа p4
- •1.5. Программа p5
- •2.1. Программа p6
- •2.2. Программа p7
- •2.3. Программа p8
- •2.4. Программа p9
- •2.5. Программа p10
- •2.6. Программа p11
- •2.7. Некоторые характеристики контрольного примера
- •3.1. Программа p1
- •3.2. Программа p2
- •3.3. Программа p3
- •3.4. Программа p4
- •3.5. Программа p5
- •3.6. Исходные данные для лабораторной работы
- •4.1. Программа p6
- •4.2. Программа p7
- •4.3. Программа p8
- •4.4. Программа p9
- •4.5. Исходные данные для лабораторной работы
- •5.1. Программа p10
- •5.2. Программа p11
- •5.3. Программа p12
- •6.1. Программа p6
- •6.2. Программа p7
- •6.3. Программа p8
- •6.4. Программа p9
- •6.5. Программа p10
- •6.6. Исходные данные для лабораторной работы
- •Глава 6. Информационные процессы на сетевом уровне сети X.25
- •6.1. Принцип установления виртуальных каналов в сети х.25
- •6.2. Диаграмма установления коммутируемого виртуального канала
- •6.3. Особенности протокола сетевого уровня х.25
- •6.4. Услуга информационной безопасности «Замкнутая группа абонентов»
- •Глава 7. Структурные схемы программного обеспечения функций сетевого уровня сети X.25
- •7.1. Структурная схема организации по функций сетевого уровня сети х.25
- •7.1.1. Структурная схема программы Ррасп «Распределение принятых пакетов из канальных процессоров в очереди по типам»
- •7.2. Структурные схемы программ формирования таблицы маршрутизации по логическим канальным номерам lcn
- •7.2.1. Структурная схема программы “Обработка пакетов "Запрос Вызова"”
- •7.2.2. Структурная схема программы “Обработка пакетов "Вызов Принят"”
- •7.3. Структурная схема программы "Коммутация пакетов "данные""
- •7.1. Программа p1
- •7.2. Программа p2
- •7.3. Программа p3
- •7.4. Программа p4
- •7.5. Программа p5
- •7.6. Программа p6
- •7.7. Программа p7
- •Исходные данные для лабораторной работы
- •Алгоритм программы "Коммутация пакетов "данные"
- •Программа lab8 выполняет функции структурной схемы программы Коммутация пакетов "данные" (см. Глава 7).
- •8.1. Программа p1
- •8.2. Программа p2
- •8.3. Программа p3
- •Глава 8. Сеть Frame Relay
- •8.1. Стек протоколов сети Frame Relay
- •8.2. Поддержка качества обслуживания
- •8.3. Типы виртуальных каналов в сети fr
- •8.4. Установление коммутируемого виртуального канала
- •8.5. Виртуальная частная сеть на основе сети Frame Relay
- •8.6. Стандарт itu-t g.1000 (sla)
- •8.7. Соглашение об уровне обслуживания сети Frame Relay
- •8.8. Особенности сети Frame Relay по сравнению с сетью х.25
- •Глава 9. Сеть atm. Физический уровень
- •9.1. Основные положения и стек уровней сети атм
- •9.2. Физический уровень atm
- •9.2.1. Подуровень физического уровня атм «Конвергенция передачи»
- •9.2.2. Подуровень физической передающей среды atm на базе рdн
- •9.2.2.1. Недостатки pdh
- •9.2.3. Подуровень физической передающей среды atm на базе sdh
- •9.2.3.1. Иерархия скоростей
- •9.2.3.2. Типы оборудования sdh
- •9.2.3.3. Стек протоколов sdh
- •9.2.3.4. Структура кадра stm
- •9.2.3.5. Топологии связей в sdh
- •Глава 10. Сеть atm. Канальный уровень
- •10.1. Уровень atм
- •10.1.1. Поле идентификаторов виртуального пути и виртуального канала
- •10.2. Параметры трафика и показатели качества обслуживания
- •10.3. Уровень адаптации атм
- •10.4. Сигнализация и маршрутизация в сети atm
- •10.4.1. Стек протоколов при установлении коммутируемого виртуального канала
- •10.4.2. Протокол pnni по выполнению функции маршрутизации
- •10.4.3. Протокол по выполнению функции сигнализации pnni
- •10.5. Управление atm-трафиком в процессе передачи
- •10.5.1. Контроль трафика
- •10.5.2. Контроль перегрузки
- •10.6. Виртуальная частная сеть на основе сети atm
- •10.7. Особенности сети атм по сравнению с сетью Frame Relay
- •Глава 11. Первичные сети уплотненного волнового мультиплексирования
- •11.1. Основные функции dwdm
- •11.2. Принцип работы dwdm
- •11.3. Типовые топологии
- •Глава 12. Ip-сети. Стек протоколов tcp/ip и их функции
- •12.1. Стек протоколов тср/ip
- •12.1.2. Транспортный уровень стека tcp/ip
- •12.1.3. Межсетевой уровень стека tcp/ip
- •12.2. Пример переноса данных в ip-сети
- •12.3. Протоколы tcp/ip
- •12.3.1. Протокол прикладного уровня snmp
- •12.3.2. Протокол транспортного уровня tcp
- •Глава 13. Ip-сети. Межсетевой уровень. Протоколы безопасности
- •13.1. Протоколы межсетевого уровня
- •13.1.1. Формат ip-пакета
- •13.1.2. Принцип маршрутизации
- •13.1.3. Внутренние и внешний протоколы маршрутизации
- •13.1.3.1. Протокол rip
- •13.1.3.2. Протокол ospf
- •13.1.3.3. Протокол bgp
- •13.2. Протоколы информационной безопасности
- •13.2.1. Протокол прикладного уровня pgp
- •13.2.2. Протокол сетевого уровня ipSeс
- •13.2.2.1. Заголовки ipSec
- •13.2.2.2. Транспортный и туннельный режимы
- •13.2.2.3. Защищенные связи
- •13.2.2.4. Виртуальная частная сеть vpn-ipSec
- •13.2.3. Протокол транспортного уровня tls
- •13.2.3.1. Передача данных при использовании tls
- •13.2.3.2. Установление защищенной связи
- •13.2.4. Протоколы иб при маршрутизации
- •Глава 14. Интегральное и дифференцированное качество обслуживания. Стандарты QoS в ip-сетях
- •14.1. Качество обслуживания
- •14.2. Интегральное обслуживание IntServ
- •14.3. Дифференцированное обслуживание DiffServ
- •14.3.1. Модель DiffServ
- •14.3.2. Структурная схема программного обеспечения обработки очередей в модели DiffServ
- •14.4. Стандарты по качеству обслуживания в ip-сетях
- •14.4.1. Рекомендация itu-t y.1540
- •14.4.2 Рекомендация itu-t y.1541
- •Глава 15. Сети mpls
- •15.1. Принцип работы сети mpls
- •15.1.1. Маршрутизатор коммутации меток (lsr)
- •15.1.2. Граничный маршрутизатор коммутации меток (ler)
- •15.2. Стек меток
- •15.3. Маршрутизация пакетов в узле коммутации lsr
- •15.4 Распределение меток
- •15.4.1 Протокол распределения меток ldp
- •15.5 Инжиниринг трафика
- •15.5.1. Пример выбора путей
- •15.6. Быстрая ремаршрутизация
- •15.7. Преимущества mpls по сравнению с ip-сетью
- •Глава 16. Виртуальные частные сети
- •16.1. Туннелирование mpls
- •16.2. Виртуальная частная сеть mpls третьего уровня (mpls l3vpn)
- •16.2.1. Общая модель mpls l3vpn
- •16.2.2. Таблицы маршрутизации в vpn
- •16.2.3. Формирование таблицы маршрутизации сообщениями mp-bgp
- •16.2.4. Пересылка пакетов в vpn
- •16.2.5. Формирование топологии vpn
- •16.2.6. Сравнение vpn-технологий
- •Обеспечение качества обслуживания
- •Масштабируемость
- •Информационная безопасность
- •Гибкость создания сети
- •Гибкая адресация
- •Объединение различных типов данных
- •Инжиниринг трафика
- •Сложность проектирования
- •Глава 17. Цифровая сеть с интеграцией служб. Общеканальная сигнализация окс№7
- •17.1. Цифровая сеть с интеграцией служб isdn
- •17.1.1. Структура сети isdn
- •17.1.2. Абонентский доступ сети isdn
- •17.1.2.1. Функции физического и канального уровней
- •17.1.2.2. Функции сетевого уровня
- •17.2. Общеканальная сигнализация окс№7
- •17.2.1. Принцип работы окс№7 в сети ТфОп/isdn
- •17.2.2. Стек протоколов окс№7 в сети ТфОп/isdn
- •17.2.3. Диаграмма установления соединения в системе окс№7 isdn
- •17.2.4. Протокол подсистемы передачи сообщений mtp
- •17.2.4.1. Уровни подсистемы передачи сообщений mtp
- •17.2.4.2. Функции звена данных сигнализации (уровень 1, мтр1)
- •17.2.4.3. Функции звена сигнализации (уровень 2, мтр2)
- •17.2.4.4. Функции сети сигнализации (уровень 3, мтр3)
- •17.2.4.5. Функции обработки сигнальных сообщений
- •17.2.4.5.1. Маршрутизация сигнальных сообщений
- •17.2.4.6. Требования к показателям качества обслуживания мтр
- •17.3. Подсистема пользователя isup
- •17.4. Аутентификация пользователя в сети isdn
- •17.4.1. Аутентификация пользователя с помощью pin-кода
- •17.4.2. Аутентификация пользователя с помощью tan
- •17.5. Аутентификация объектов аудиовизуальной службы сети isdn и создание общих секретных ключей взаимодействующих объектов
- •Сравнивая приведенный алгоритм с протоколами ipSec и tls (глава 13), можно заметить тот же самый принцип, что и при установлении защищенной связи. Глава 18. Ip-телефония
- •18.1. Протокол sip
- •18.1.1.Упрощенный пример сети на базе протокола sip
- •18.1.2. Cетевые компоненты протокола sip
- •18.1.3. Сообщения sip
- •18.1.3.1. Поля заголовка сообщения при регистрации sip
- •18.1.3.2. Транзакции и диалоги sip
- •18.1.3.3. Маршрутизация сообщений sip
- •18.1.4. Протокол sip-t
- •18.2. Информационная безопасность sip
- •18.2.1. Угрозы иб
- •18.2.1.2. Подмена сервера
- •18.2.1.4. Прерывание сеанса связи
- •18.2.1.5. Отказ в обслуживании
- •18.2.2. Требования к способам обеспечения иб в сети sip
- •18.2.3. Механизмы обеспечения иб
- •18.2.3.1. Механизм иб sip-сети на базе протокола ipSec
- •18.2.3.2. Механизм иб sip-сети на базе протокола tls
- •18.2.3.3. Механизм иб sip-сети на базе протокола s/mime
- •18.2.3.4. Механизм аутентификации пользователя в sip-сети на базе протокола http Digest
- •18.2.3.5. Аутентификация идентификатора пользователя
- •18.3. Транспортировка данных в сети sip
- •18.3.1. Протоколы транспортировки данных
- •18.3.2. Обеспечение иб при транспортировке данных
- •Глава 19. Управление сетью сигнализации окс№7
- •19.1. Управление сетью сигнализации
- •19.1.1. Управление сигнальным трафиком
- •19.1.1.1. Процедуры перевода трафика на резервное зс и возврата на исходное зс
- •19.1.1.2. Процедура вынужденной ремаршрутизации и управляемой ремаршрутизации
- •19.1.1.3. Процедура перезапуска мтр
- •19.1.1.4. Процедура управляемого переноса
- •19.1.1.5. Недоступность подсистемы isup
- •19.1.2. Управление звеньями сигнализации
- •19.1.3. Управление сигнальными маршрутами
- •19.2. Тестирование звена сигнализации
- •19.3. Пример отказа и восстановления сигнального звена сигнализации между исходящим и транзитным пунктами сигнализации
- •19.3.1. Алгоритм при отказе звена сигнализации
- •19.3.2. Восстановление звена сигнализации
- •19.4. Пример отказа и восстановления транзитного пункта сигнализации
- •19.4.1. Отказ транзитного пункта сигнализации
- •19.4.2. Восстановление транзитного пункта
- •Глава 20. Интеллектуальные сети
- •20.1. Принцип обслуживания вызовов в сети ТфОп/isdn на основе интеллектуальной сети
- •20.2. Подсистема sccp в стеке протоколов окс№7 интеллектуальной сети
- •20.2.1. Службы передачи сообщений
- •20.2.2. Управление маршрутизацией
- •20.2.3. Управление подсистемой sccp
- •20.2.4. Расширение адресации
- •20.3. Взаимодействие уровней окс №7 в сети in. Пример алгоритма представления услуги
- •20.4. Алгоритм аутентификации в протоколе услуги «универсальная персональная связь» интеллектуальной сети
- •20.5. Количественная оценка угроз безопасности интеллектуальной сети
- •Глава 21. Сети стандарта gsm
- •21.1. Классификация беспроводных сетей связи
- •21.2. Система gsm
- •21.2.1. Функциональная архитектура gsm
- •21.2.1.1. Подсистема радиосвязи
- •21.2.1.2. Подсистема сетей и коммутации
- •21.2.1.3. Операционная подсистема
- •21.2.2. Логические каналы и установление связи
- •21.3. Обработка речевых сигналов на радиоучастке
- •21.3.1. Кодер речи
- •21.3.2. Кодер канала
- •21.3.3. Модуляция
- •21.4. Информационная безопасность gsm
- •21.4.1. Конфиденциальность
- •21.4.2. Аутентификация пользователя
- •21.4.3. Защита приватных данных
- •Глава 22. Система окс№7 в gsm. Информационная безопасность окс№7 в ссоп
- •22.1. Архитектура протоколов передачи сигналов в gsm
- •22.2. Пример обработки вызова мобильной станции из ТфОп/isdn и управление мобильностью
- •22.2.1. Вызов мобильной станции из ТфОп/isdn и обеспечение защиты приватных данных местоположения абонента-роумера
- •22.2.2. Управление мобильностью
- •22.3. Принцип иерархии федеральной сети общего пользования gsm
- •22.4. Принцип построения системы окс№7 России
- •22.5. Информационная безопасность окс№7
- •22.5.1. Архитектура сетевой безопасности окс№7
- •22.5.1.1. Уровни безопасности окс№7
- •22.5.1.2. Плоскости безопасности окс№7
- •22.5.2. Атаки «отказ в обслуживании» DoS в окс№7
- •22.5.2.1. Примеры последствий воздействия атак DoS нарушения маршрутизации окс№7
- •Результаты анализа архитектуры сетевой безопасности окс№7 при воздействии атаки DoS процедуры маршрутизации
- •Глава 23. Сети сотовой связи стандартов gprs, edge и umts
- •23.1.1.1. Информационная безопасность gprs
- •23.1.2. Сети сотовой связи стандарта edge и показатели скорости передачи
- •23.1.2.1. Метод перескока частоты
- •23.2. Сети сотовой связи стандарта umts
- •23.2.1. Принцип работы cистемы cdma
- •23.2.2. Сравнение систем tdma/fdma и cdma
- •23.2.3. Сети сотовой связи стандарта umts
- •23.3. Информационная безопасность umts
- •23.3.1. Ограничения в обеспечении иб gsm
- •23.3.2. Классификация угроз иб в umts
- •23.3.3. Обеспечение защиты приватности местоположения мобильной станции
- •23.3.4. Взаимная аутентификация пользователи и сети
- •23.3.5. Установление алгоритмов обеспечения целостности сообщений и шифрования сообщений
- •23.3.6. Шифрование сообщений
- •Глава 24. Беспроводные локальные сети стандартов 802.11
- •24.1. Архитектура сети стандарта 802.11
- •24.2. Подуровень mac стандартов сетей Wi-Fi
- •24.3. Физический уровень стандартов сетей Wi-Fi
- •24.3.1. Базовый стандарт 802.11
- •24.3.2. Стандарт 802.11b
- •24.3.3. Стандарт 802.11a
- •24.3.4. Стандарт 802.11g
- •24.3.5. Стандарт 802.11n
- •24.4. Mesh-сети стандарта 802.11s
- •24.5. Стандарты информационной безопасности сети Wi-Fi
- •23.5.1. Протокол безопасности wep
- •24.5.2. Протокол безопасности wpa
- •24.5.2.1. Аутентификация
- •24.5.2.2. Конфиденциальность и целостность данных
- •24.5.3. Протокол безопасности 802.11i
- •Глава 25. Сети WiMax и lte
- •25.1. Общие положения
- •25.2. Физический уровень WiМах
- •25.2.1. Режим ofdm
- •25.2.2. Режим ofdmа и sofdmа
- •25.2.3. Канальное кодирование
- •25.3.1. Классы качества обслуживания
- •25.3.2. Подуровень безопасности
- •Глава 26. Самоорганизующиеся сети son
- •26.1. Функции самоорганизующихся сетей и область их использования
- •26.1.1. Сенсорные сети (wsn)
- •26.1.2. Ячеистые сети (wmn)
- •26.1.3. Автомобильные беспроводные сети (vanet)
- •26.2. Угрозы безопасности самоорганизующихся сетей
- •26.2.1. Перехват
- •26.2.2. Анализ трафика
- •26.2.3. Физические атаки
- •26.2.4. Фальсификация, повтор и изменение сообщений
- •26.2.5. Атаки DoS (“ отказ в обслуживании”)
- •26.2.5.1. DoS на физическом уровне
- •26.2.5.2. DoS на канальном уровне
- •26.2.5.3. DoS маршрутизации
- •26.3. Протоколы маршрутизации
- •26.3.1. Протоколы маршрутизации сети manet
- •26.3.1.1. Требования к протоколам маршрутизации в manet
- •26.3.1.2. Протоколы маршрутизации aodv и saodv
- •26.3.2. Протоколы маршрутизации беспроводной сенсорной сети
- •26.3.3. Протоколы защиты маршрутизации mesh-сети
- •26.3.4. Безопасность автомобильной беспроводной сети (vanet)
- •А.1. Задачи безопасности сетей связи
- •А.2. Архитектура безопасности сетей связи
- •А.2.1. Способы обеспечения информационной безопасности
- •Управление доступом
- •Аутентификация
- •Неотказуемость
- •А.2.3. Плоскости безопасности
- •А.2.4. Угрозы безопасности и способы обеспечения безопасности
- •А.2.5. Способы обеспечения иб в модулях безопасности
- •А.3. Метод количественной оценки угрозы безопасности сети связи
- •Приложение б. Шифрование с общим ключом
- •Б.1. Классификация методов шифрования
- •Б.2. Блочные шифры
- •Б.2.1. Методы перестановки и подстановки. Схема блочного шифрования
- •Б.2.2. Режимы блочного шифрования
- •Б.2.2.1. Режим электронного шифроблокнота (ecb)
- •Б.2.2.2. Режим группового шифра (ofb)
- •Б.3. Поточные шифры
- •В.2. Алгоритм rsa
- •В.3. Электронная цифровая подпись (эцп)
- •В.3.1. Требования к эцп
- •В.3.2. Эцп на основе шифрования профиля сообщения
- •В.3.2.1. Функция хеширования стандарта sha-1
- •В.3.2.2. Применение sha-1 и rsa для создания эцп
- •В.3.3. Управление открытыми ключами
- •В.3.3.1. Угроза «человек посередине»
- •В.3.3.2. Сертификаты
- •В.3.3.3. Стандарт сертификатов х.509
- •Одношаговая аутентификация
- •Двухшаговая аутентификация
- •Трёхшаговая аутентификация
- •Г.1. Аутентификация по протоколу оклик-отзыв
- •Г.2. Аутентификация с помощью кода аутентичности сообщения
- •Д.1. Дискретный логарифм
- •Д.2. Формирование общего ключа симметричного шифрования
- •Д.3. Уязвимость алгоритма Диффи-Хеллмана к атаке «человек посередине»
- •Контрольные вопросы
- •Принятые сокращения
- •Литература
13.2.2. Протокол сетевого уровня ipSeс
Настоящий раздел посвящен алгоритму протокола IPSec, механизмы реализации которого расположены ниже транспортного уровня эталонной модели TCP/IP на сетевом уровне (глава 12, рис. 12.1). Главным достоинством протокола IPSec, позволяющего поддерживать самые разнообразные приложения, является возможность шифрования и аутентификации всего потока данных на уровне IP. Защита может быть обеспечена любому приложению, т.е. протокол IPSec является прозрачным средством защиты для прикладных программ.
Механизмы защиты на уровне IP по протоколу IPSec обеспечивают ИБ не только сетевых приложений, имеющих свои встроенные средства, но и приложений, не обладающих такими возможностями.
Протокол IPSec обеспечивает защиту обмена данными в различных компьютерных сетях: локальных, корпоративных и открытых глобальных сетях типа Интернет. Приведем два примера применения IPSec, для которых в настоящем разделе дается описание использования этого протокола безопасности.
Защищенный доступ к филиалу организации или
к сети другой организации через Интернет
Протокол IPSec позволяет объединить в единую защищенную сеть компьютеры центрального офиса и его филиалов. Такая сеть, связанная с помощью общедоступной сети Internet, является виртуальной частной сетью VPN (Virtual Private Network).
Усиление защиты протоколов ИБ прикладного уровня
Защищенный канал, реализованный на прикладном уровне, защищает только определенную службу (файловую, гипертекстовую, почтовую и др.). При этом для каждого прикладного протокола необходимо разрабатывать собственные средства защиты. Использование IPSec усиливает защиту механизмов обеспечения ИБ, встроенных в протоколы прикладного уровня (такие, как протоколы электронной коммерции и другие).
На рис. 13.5 показан пример использования IPSec. Здесь приведена корпоративная сеть из двух локальных вычислительных сетей, находящихся в разных местах. Под полезным грузом здесь понимается поле данных, в которое входят заголовки и информация уровней выше сетевого (т.е. транспортного и прикладного). Поле заголовка IPSec предназначено для аутентификации и конфиденциальности информации полезного груза. В рамках локальных сетей трафик IP корпоративной сети не защищается. Локальные вычислительные сети подключены через маршрутизаторы к сети Интернет, через которую обмениваются IP-текстами абоненты этих локальных сетей. Протокол IPSec обеспечивает ИБ этих пакетов. Эти протоколы установлены в маршрутизаторы по периметру сети. В маршрутизаторах производится шифрование потока данных, отправляемых в Интернет, и расшифрование данных, приходящих из Интернет. Все выполняемые при этом операции не заметны для рабочих станций и серверов локальных сетей.
Рис. 13.5. Пример использования IPSec
13.2.2.1. Заголовки ipSec
В настоящем разделе приводится описание процедуры IPSec по аутентификации и конфиденциальности передаваемых сообщений.
На рис. 13.5 показано расширение заголовка IP – поле заголовка IPSec, которое позволяет реализовать протоколы AH и ESP.
Протокол AH обеспечивает только аутентификацию. Естественно, подобная защита данных во многих случаях оказывается недостаточной. Принимающая сторона в этом случае получает лишь возможность проверить, что данные были отправлены именно тем узлом, от которого они ожидаются и дошли в том виде, в котором были отправлены. Однако от несанкционированного просмотра данных на пути их следования по сети протокол AH защитить не может, так как не шифрует их. Для шифрования данных необходим протокол ESP.
Протокол AH
Протокол «Заголовок аутентификации» AH, как было отмечено выше, обеспечивает аутентификацию сообщений. Формат заголовка AH в транспортном режиме показан на рис. 13.6. Под полезной нагрузкой здесь показано поле данных прикладного уровня.
Рис. 13.6. Заголовок аутентификации АН в транспортном режиме
Заголовок АН расположен между заголовком IP и заголовком TCP. Рассмотрим заголовок АН. Поле «Следующий заголовок» указывает код протокола, которым может быть протокол транспортного уровня (TCP или UDP) или протокол ESP, если он используется в комбинации с AH. Поле «Длина полезной нагрузки» указывает на длину заголовка АН. Поле «Индекс параметров защиты SPI» – это идентификатор соединения. Он вставляется отправителем и ссылается на конкретную запись в базе данных получателя. В этой записи содержится общий ключ и другая информация данного соединения. Поле «Порядковый номер» используется механизмом окна защиты от угрозы «повтор». В этом поле размещаются номера всех текстов, посылаемых по защищенной связи. Все пакеты получают универсальные номера, даже если они посылаются повторно. Имеется в виду, что повторно передаваемый пакет имеет номер, отличный от номера оригинального пакета (даже если порядковый номер TCP тот же самый). Это поле служит для предотвращения взлома путем повторной передачи. Порядковые номера никогда не повторяются. Если же окажутся использованными все 232 номера, для продолжения общения устанавливается новая защищённая связь. Поле «Данные аутентификации» содержит код аутентификации сообщения по алгоритму HMAC (см. приложение Г, раздел Г.3). Спецификация протокола IPSec требует, чтобы любая реализация поддерживала две схемы алгоритма HMAC – с использованием хеш-кода MD5 и хеш-кода SHA-1. В обоих случаях вычисляется полное значение HMAC, равное длине хеш-кода (для MD5 128 бит и для SHA-1 160 бит), но затем оно усекается до 96 бит, что соответствует длине поля данных аутентификации, установленной по умолчанию.
Для вычисления HMAC берется информация заголовка IP-пакета, а также данные протокола следующего выше уровня (например, сегмент TCP или внутренний IP-пакет в туннельном режиме), которые не изменяются в пути следования. Примерами неизменяемых полей являются адреса отправителя и получателя IP-пакета, что защищает их от подмены злоумышленником. Поле «Время жизни» заголовка IP-пакета меняется при каждой пересылке через маршрутизатор.
Протокол ESP
Протокол «Защищенный полезный груз» ESP обеспечивает конфиденциальность. В качестве дополнительной возможности ESP может обеспечивать также аутентификацию. На рис. 13.7, а) показана область действия шифрования и аутентификации ESP в транспортном режиме, а на рис. 13.7, б) - в режиме туннелирования. Спецификации на IPSec требуют, чтобы протокол ESP поддерживал использование алгоритмов шифрования: DES, тройной DEA, IDEA и другие.
Рис. 13.7. Область действия шифрования и аутентификации ESP:
а) в транспортном режиме,
б) в режиме туннелирования
Заголовок ESP состоит из двух 32-разрядных полей «Индекс параметров защиты» SPI и «Порядкового номера», как и в заголовке АН.
ESP в транспортном режиме шифрование (и, как опция, аутентификация) осуществляет непосредственно между двумя оконечными компьютерами пользователей (рис.13.7, а). ESP, как и АН, обеспечивает проверку целостности при помощи НМАС, однако вместо того, чтобы включать хеш в заголовок, его вставляют после поля полезной нагрузки. Это видно на рис. 13.7, а). Такое расположение полей дает преимущество при аппаратной реализации метода. Оно заключается в том, что НМАС может подсчитываться во время передачи битов полезной нагрузки по сети и добавляться к ним в конец. Именно поэтому в Ethernet и других стандартах локальных сетей циклический код вставляется в концевик, а не в заголовок. При применении заголовка АН пакет приходится буферизовать и вычислять подпись, только после этого его можно отправлять. Это потенциально приводит к уменьшению числа пакетов, которые можно передать за единицу времени.
В транспортном режиме выполняются следующие операции.
В узле источника блок данных, состоящий из концевика ESP и всего сегмента транспортного уровня, шифруется, и открытый текст этого блока заменяется шифрованным текстом, в результате чего формируется пакет IP для пересылки. Если выбрана опция аутентификации, то добавляется поле аутентификации.
Пакет направляется адресату. Каждый промежуточный маршрутизатор должен проверить и обработать заголовок IP. Шифрованный текст при этом остается неизменным.
Узел адресата проверяет и обрабатывает незашифрованный заголовок IP-пакета. Затем на основе информации индекса параметров защиты в заголовке ESP дешифруются остальные части пакета, в результате чего становится доступным сегмент транспортного уровня в виде открытого текста.
Транспортный режим обеспечивает конфиденциальность для любого использующего этот режим приложения, что позволяет избежать необходимости реализации функций защиты в каждом отдельном приложении. Этот режим достаточно эффективен, а объем добавляемых к пакету IP данных при этом невелик. Недостатком этого режима является то, что IP-адреса пользователей являются открытыми и поэтому не исключается возможность анализа трафика пересылаемых пакетов. Например, если во время военного кризиса трафик между Пентагоном и Белым домом резко снижается и при этом так же резко растет трафик между Пентагоном и какой-нибудь военной базой в Колорадо, перехватчик может сделать из этого далеко идущие выводы.
Туннельный режим ESP в отношении возможности анализа трафика имеет преимущество перед транспортным режимом. Туннельный режим ESP предлагает шифрование всего пакета IP (рис. 13.7, б). В этом режиме заголовок ESP добавляется к пакету как префикс, а затем пакет вместе с концевиком ESP шифруются. Данный метод можно использовать, когда требуется исключить возможность проведения атак, построенных на анализе трафика.
Поскольку заголовок IP содержит адрес пункта назначения, нельзя просто передать шифрованный пакет IP с добавленным к нему в виде префикса заголовком ESP. Промежуточные маршрутизаторы не смогут обработать такой пакет. Таким образом, необходимо включить весь блок (заголовок ESP, шифрованный текст и данные аутентификации, если они есть) во внешний пакет IP с новым заголовком, который будет содержать достаточно информации для маршрутизации, но не для анализа трафика.
В то время как транспортный режим подходит для защиты соединений между узлами, поддерживающими ESP, туннельный режим оказывается полезным в конфигурации, предполагающей наличие шлюза защиты внутренней сети от внешних сетей. В туннельном режиме шифрование используют для обмена только между внешним узлом и шлюзом защиты или между двумя шлюзами защиты. Это разгружает узлы внутренней сети, избавляя их от необходимости шифрования данных, и упрощает процедуру распределения ключей, уменьшая число требуемых ключей. Кроме того, такой подход усложняет задачу анализа потока сообщений, направляемых конкретному адресату. Режим туннелирования еще более усложняет анализ трафика, когда несколько TCP-соединений объединяются и обрабатываются в виде единого шифрованного потока. В этом случае злоумышленник не может проанализировать трафик, так как не знает, кто кому передает тексты и в каком количестве.
Рассмотрим случай, когда внешний узел (граничный маршрутизатор) соединяется с узлом внутренней сети, защищенной шлюзом и ESP, используется внешним узлом и шлюзом защиты. Тогда при пересылке сегмента транспортного уровня от внешнего узла к узлу внутренней сети выполняются следующие действия.
Источник готовит внутренний пакет IP с указанием адреса пункта назначения, являющегося узлом внутренней сети. К этому пакету в виде префикса добавляется заголовок ESP. Затем пакет шифруется и к нему могут быть добавлены данные аутентификации. Полученный блок заключается во внешний пакет IP с новым заголовком IP, в котором адресом пункта назначения является адрес шлюза защиты.
Внешний пакет отправляется шлюзу защиты сети пункта назначения. Каждый промежуточный маршрутизатор должен проверить и обработать внешний заголовок IP и все внешние заголовки расширений IP, оставляя при этом шифрованный текст неизменным.
Шлюз защиты, получив пакет, проверяет и обрабатывает внешний заголовок IP. Затем на основе информации, предоставляемой индексом параметров защиты в заголовке ESP, шлюз защиты расшифровывает остальные части пакета, в результате чего становится доступным внутренний пакет IP в виде открытого текста. Этот пакет потом передается по внутренней сети.
Внутренний пакет передается маршрутизатору внутренней сети или непосредственно узлу-адресату.