
- •Оглавление
- •Введение (новый весь раздел)
- •Архитектуры, характеристики, классификация эвм
- •Однопроцессорные архитектуры эвм
- •Конвейерная обработка команд из раздела 3.5
- •Cуперскалярная обработка из раздела 1.1.1 с дополнением
- •Архитектура sisd
- •Vliw-архитектура
- •Simd-архитектура
- •Многоядерные структуры процессора и многопотоковая обработка команд
- •Технические и эксплуатационные характеристики эвм
- •Классификация эвм
- •Классификация эвм по назначению
- •Классификация эвм по функциональным возможностям
- •Функциональная и структурная организация эвм
- •Обобщенная структура эвм и пути её развития
- •Типы данных
- •Структура и форматы команд эвм
- •Способы адресации информации в эвм
- •2.4.1. Абсолютные способы формирования исполнительного адреса
- •2.4.2. Относительные способы формирования исполнительных адресов ячеек памяти
- •Примеры форматов команд и способов адресации
- •Форматы команд и способы адресации в интеловских процессорах
- •Форматы команд и способы адресации в risc-процессорах
- •Особенности системы команд ia-64
- •Раздел 2.6 перенесен из раздела 3.6 предыдущего пособия
- •Принципы организации системы прерывания программ
- •ФункциональнаЯ и структурнаЯ организация центрального процессора эвм
- •НИзменен номер азначение и структура центрального процессора
- •Назначение, классификация и организация цуу
- •Регистровые структуры процессоров amd64 (Intel64)
- •Регистровые структуры процессоров ia-64
- •Структурная организация современных универсальных микропроцессоров
- •Стратегия развития процессоров Intel
- •Особенности многоядерной процессорной микроархитектуры Intel Core
- •Микроархитектура Intel Nehalem
- •Семейство процессоров Intel Westmere
- •Микроархитектура amd к10
- •Современное состояние и перспективы развития микропроцессоров для Unix-серверов
- •Микропроцессоры семейства Ultra sparc
- •Микропроцессор ibm power 7
- •Микропроцессор Intel Itanium 9300 (Tukwila)
- •Микропроцессор Intel Nehalem ex
- •Принципы организации подсистемы памяти эвм и вс
- •Иерархическая структура памяти эвм
- •Организация стека регистров
- •Способы организации кэш-памяти
- •Типовая структура кэш-памяти
- •Способы размещения данных в кэш-памяти
- •Методы обновления строк основной памяти и кэша
- •Методы замещения строк кэш-памяти
- •МУбран абзац ногоуровневая организация кэша
- •Принципы организации оперативной памяти
- •Общие положения
- •Методы повышения пропускной способности оп
- •М Изменён номер етоды управления памятью
- •ОИзменен номер рганизация виртуальной памяти
- •Методы ускорения процессов обмена между оп и взу
- •ОрганизациЯ системНого интерфейса и вВода-вывода информации
- •Общая характеристика и классификация интерфейсов
- •Способы организации передачи данных
- •Системная организация компьютеров на базе современных чипсетов
- •Системная организация на базе чипсетов компании Intel
- •Системная организация на базе чипсета amd
- •Многопроцессорные и многомашинные вычислительные системы
- •Архитектуры вычислительных систем
- •Сильносвязанные многопроцессорные системы
- •Слабосвязанные многопроцессорные системы
- •Список литературы
- •Организация эвм и систем
Способы организации передачи данных
В подсистеме ввода-вывода ЭВМ используются три основных способа организации передачи данных между памятью и ПУ: программно-управляемая передача, передача по запросу прерывания от ПУ и прямой доступ к памяти (ПДП).
Программно-управляемая передача данных осуществляется при непосредственном участии и под управлением процессора, который при этом выполняет специальную подпрограмму ввода-вывода. Операция ввода-вывода инициируется центральным процессором, т. е. текущей командой программы. Данный способ является простым в реализации, но при обработке команды ввода-вывода ЦП бесполезно тратит время, ожидая готовности ПУ. Это значительно снижает производительность ЭВМ.
Второй способ передачи данных по запросу прерывания от ПУ реализуется под управлением контроллера прерываний (КПР) и позволяет организовывать более гибкое взаимодействие между ЦП и ПУ. Предположим, что в качестве ПУ используется клавиатура, предназначенная для ввода в ЭВМ команд, инструкций и данных. Каждый раз, когда пользователь (оператор) нажимает клавишу, ПУ выдает в КПР запрос на прерывание, который в свою очередь вырабатывает для ЦП сигнал прерывания. ЦП по этому сигналу приостанавливает работу текущей программы и передает управление подпрограмме ввода-вывода. Подпрограмма обрабатывает запрос и по её завершению ЦП возвращается к работе по текущей программе. Выполнение текущей программы продолжается до следующего нажатия клавиши, и далее процесс повторяется. В этом случае преимущество от использования прерывания очевидно (принципы работы системы прерывания программ описаны в разделе 2.6).
При программно-управляемой передаче данных ЦП на всё время этой передачи отвлекается от выполнения основной программы. Операция пересылки данных логически слишком проста, чтобы эффективно загружать логически сложную быстродействующую аппаратуру процессора. Вместе с тем при пересылке блока данных ЦП приходится для каждой единицы передаваемых данных (байт, слово) выполнять довольно много инструкций, чтобы обеспечить буферизацию данных, преобразование форматов, подсчёт количества переданных данных, формирование адресов в памяти и т. п. В результате скорость передачи данных при пересылке блока данных под управлением процессора оказывается недостаточной. Поэтому для быстрого ввода-вывода блоков данных и разгрузки ЦП от управления операциями ввода-вывода используют прямой доступ к памяти.
Прямой доступ к памяти
Прямой доступ к памяти (DMA – Direct Memory Access) – это такой способ обмена данными, который обеспечивает автономно от ЦП установление связи и передачу данных между ОП и ПУ. Прямой доступ к памяти освобождает процессор от управления операциями ввода-вывода, позволяет осуществлять параллельно во времени выполнение процессором программы с обменом данными между ОП и ПУ, производить этот обмен со скоростью, ограничиваемой только пропускной способностью ОП или ПУ.
Таким образом, ПДП, разгружая процессор от обслуживания ввода-вывода, способствует возрастанию общей производительности ЭВМ. Повышение предельной скорости ввода-вывода информации делает машину более приспособленной для работы в системах реального времени. Прямым доступом к памяти управляет контроллер ПДП (DMA) (см. рис. 5.2), который выполняет следующие функции:
Рис. 5.2. Прямой доступ к памяти
1. Управление инициируемой процессором или ПУ передачей данных между ОП и ПУ.
2. Задание размера блока данных, который подлежит передаче, и области памяти, используемой при передаче.
3. Формирование адресов ячеек ОП, участвующих в передаче.
4. Подсчёт числа единиц данных (байт, слов), передаваемых от ПУ в ОП или обратно, и определение момента завершения заданной операции ввода-вывода.
ПДП обеспечивает высокую скорость обмена данными за счёт того, что управление обменом производится не программным путем, а аппаратурными средствами.
К
Убран абзац
В современных ЭВМ используются все перечисленные способы передачи данных.