
- •Билет №1
- •Основные физико-химические процессы получения чугуна в современных доменных печах. Продукция доменного производства.
- •Физико – химические процессы, происходящие в доменной печи.
- •5. Науглероживание железа и образование чугуна.
- •Виды и конструкции полимерных изоляционных материалов (на основе пэ и пвх) для защиты магистральных и технологических трубопроводов транспорта нефти и газа от коррозии.
- •Билет №2
- •Химические реакции в кислородном конверторе.
- •2. Виды и конструкции мастичных изоляционных материалов для защиты магистральных и технологических трубопроводов транспорта нефти и газа от коррозии.
- •Билет №3
- •Атомно-кристаллическое строение металлов. Понятие вторичной кристаллизации (аллотропии).
- •2 Технология нанесения полимерной и мастичной изоляции на магистральные трубопроводы в полевых условиях
- •Мастичные покрытия
- •Полимерные покрытия
- •Билет №4 Физические основы обработки металлов давлением (омд). Классификация видов омд.
- •2. Заводская полимерная изоляции труб. Конструкция заводского изоляционного покрытия. Преимущества и недостатки заводской изоляции труб.
- •Билет №5
- •Понятие профиля и сортамента. Листовой и сортовой прокат, прокатка труб. Производство гнутых профилей.
- •Способы нанесения заводской изоляции труб. Способы контроля качества заводской изоляции труб.
- •Билет №6
- •Общая технологическая схема изготовления отливок. Литейные свойства сплавов. Напряжения в отливках.
- •Основные свойства нефтяных изоляционных и строительных битумов. Битумные мастики. Наполнители. Пластификаторы. Приготовление праймера в полевых условиях.
- •Билет №7
- •Специальные виды литья: литье в оболочковые формы, литье по выплавляемым моделям, литье в кокиль, литье под давлением, центробежное литье. Дефекты отливок.
- •Физические основы получения сварного соединения. Понятие о свариваемости. Классификация способов сварки.
- •Входной контроль качества труб с заводской изоляцией. Ремонт заводской изоляции труб. Контроль качества ремонта заводской изоляции.
- •Билет №9
- •Электродуговая сварка металлов. Сущность процесса. Источники сварочного тока и их внешние характеристики.
- •2.Лакокрасочные материалы для наружной и внутренней окраски резервуаров и газгольдеров на основе превращаемых, непревращаемых и смешанных пленкообразователей.
- •Билет №10
- •Ручная дуговая сварка покрытым электродом. Электроды для ручной дуговой сварки. Назначение и состав покрытия электрода.
- •Подготовка наружной и внутренней поверхности трубопровода для нанесения лкм.
- •2.Технология нанесения изоляционного покрытия на внутр. Поверх. Труб
- •Экзаменационный билет № 12
- •1. Сварка в среде защитных газов. Сущность процесса и область применения.
- •Билет №13
- •Ультразвуковая сварка пластмасс. Сущность процесса. Область применения.
- •Классификация легированных сталей, их маркировка. Влияние легирующих элементов на свойства сталей.
- •Классификация теплоизоляционных материалов трубопроводов.
- •Углеродистые стали обыкновенного качества. Маркировка сталей по гост.
- •Билет №18 Сварка трубопроводов в полевых условиях.
- •Гидроизоляционные материалы проникающего действия. Технология нанесения гидроизоляции на основе смесей гидро-s: гидро-s-б; гидро-s-в; гидро-s-п; гидро-s-у.
- •Сварочные материалы для ручной дуговой сварки трубопроводов.
- •Гидроизоляция строительных конструкций во влагонасыщенных грунтах с помощью покрытия «Лахта» и противофильтрационной изоляции типа «Бирс».
- •2 Основные преимущества и недостатки пластмассовых труб. Трубы из термопластов и ректопластов.
- •1 Классификация легированных сталей, их маркировка. Влияние легирующих элементов на свойства сталей.
- •2. Материал пластмассовых труб: полимерное связующее, наполнители, пластификаторы, стабилизаторы, отвердители, красители
2 Основные преимущества и недостатки пластмассовых труб. Трубы из термопластов и ректопластов.
Отметим положительные качества, одинаково присущие всем пластиковым трубам:
долговечность: срок службы пластмассовых труб в три-пять раз больше, чем у стальных и, как правило, достигает 50 и более лет;
устойчивость против коррозии: это свойство обусловлено неспособностью полимеров вступать в электрохимические реакции;
экологическая чистота пластиковых труб;
низкая теплопроводность;
малый вес;
малая шумность водяного потока; простой и быстрый монтаж;
возможность как скрытой, так и внешней прокладки.
низкой теплопроводностью
Одним общим термином «пластмасса» принято называть две большие группы материалов: реактопласты и термопласты.
Важной особенностью первой группы считается то, что они не поддаются формовке, при нагревании не плавятся, а сразу разрушаются с полной утратой внутренней структуры. Так что при относительно высокой прочности реактопласты очень хрупки. В связи с этим из материалов этой группы нельзя изготовить сантехнические детали и узлы.
Из данного материала производят корпуса для бытовой техники, электрические патроны, прищепки, пуговицы и пр.
Термопласты обладают способностью сохранять внутренние связи даже после полного расплавления, при этом они не очень хрупкие. К термопластам относятся целлюлоза, плексиглас (оргстекло), полистирол, полиэстилен, поливинилхлорид, полиэтилен.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21
1 Классификация легированных сталей, их маркировка. Влияние легирующих элементов на свойства сталей.
Легированные стали могут быть классифицированы по четырем признакам: по равновесной структуре, по структуре после охлаждения на воздухе, по составу и по назначению.
Классификация по равновесной структуре
1.Доэвтектоидные стали, имеющие в структуре избыточный феррит.
2. Эвтектоидные стали имеющие перлитную структуру.
3. Заэвтектоидные стали имеющие в структуре избыточные (вторичные) карбиды.
4. Ледебуритные стали имеющие в структуре первичные карбиды, выделившиеся из жидкой стали. В литом виде избыточные карбиды совместно с аустенитом образуют эвтектику- ледебурит, который при ковке или прокатке разбивается на обособленные карбиды и аустенит.
Классификация по структуре после охлаждения на воздухе
Учитывая структуру, получаемую после охлаждения на спокойном воздухе можно выделить три основных класса сталей:
1-перлитный, характеризуются относительно малым содержанием легирующих элементов.
2- мартенситный, более значительное содержание легирующих элементов.
3-аустенитный, высокое содержание легирующих элементов.
Классификация по составу
Как никелевые, хромистые, хромоникелевые, хромоникель-молибденовые и т.д. Классификационным признаком служит наличие в стали тех или иных легирующих элементов.
Классификация по назначению.
В зависимости от назначения стали можно объединить в следующие группы.
Конструкционная сталь, идущая на изготовление деталей машин. Конструкционная (машиноподелочная) сталь, как правило, у потребителя подвергается термической обработке. Поэтому конструкционные стали подразделяют на цементуемые (подвергаемые цементации) и улучшаемые (подвергаемые закалке и отпуску, практически не обязательно высокому).
Близкие по составу к конструкционным сталям, но не предназначаемые для термической обработки у потребителя, объединяются г-, группу так называемых строительных сталей (они в основном применяются в строительстве). Часто их называют низколегированными.
Инструментальная сталь, идущая на изготовление режущего, измерительного, штампового и прочего инструмента. Инструментальные стали условно подразделяют на следующие четыре категории: углеродистые, легированные, штамповые и быстрорежущие.
Стали и сплавы с особыми свойствами. К ним относятся стали, обладающие каким-нибудь резко выраженным свойством: нержавеющие, жаропрочные и теплоустойчивые, износоустойчивые, с особенностями теплового расширения, с особыми магнитными и электрическими свойствами и т.д.
МАРКИРОВКА ЛЕГИРОВАННЫХ СТАЛЕЙ
Для обозначения марок стали разработана система, принятая в ГОСТах. Обозначения состоят из небольшого числа цифр и букв, указывающих на примерный состав стали.
Каждый легирующий элемент обозначается буквой: Н — никель; X — хром; К — кобальт; М — молибден; Г — марганец; Д — медь; Р — бор; Б — ниобий; Ц — цирконий; С—кремний; П — фосфор; Ч—редкоземельные металлы; В — вольфрам; Т — титан; А—азот; Ф—ванадий; Ю — алюминий.
Первые цифры в обозначении показывают среднее содержание углерода в сотых долях процента (у высокоуглеродистых инструментальных сталях в десятых долях процента). Цифры, идущие после буквы, указывают на примерное содержание данного легирующего элемента (при содержании элемента менее 1% цифра отсутствует; при содержании около 1% —цифра 1 и около 2% — цифра 2 и т. д.).высококачественной стали, в конце обозначения марки ставят букву А.*
Влияние легпрущпх элементов на кинетику распада аустенита
Влияние же легирующих элементов на кинетику превращения аустенита очень велико.
Элементы, которые только растворяются в феррите или цементите, не образуя специальных карбидов, оказывают лишь количественное влияние на процессы превращения. Они или ускоряют превращение (к таким элементам относится только кобальт), или замедляют его (большинство элементов, в том числе марганец, никель, медь и др.).
Карбидообразующие элементы вносят не только количественные, но и качественные изменения в кинетику изотермического превращения. Так, легирующие элементы, образующие растворимые в аустените карбиды, при разных температурах по-разному влияют на скорость распада аустенита: 700—500° С (образование перлита)—замедляют превращение; 500—400° С— весьма значительно замедляют превращение; 400—300э С (образование бейнита) — ускоряет превращение.
Таким образом, в сталях, легированных карбидообразующими элементами (хром, молибден, вольфрам), наблюдаются два максимума скорости изотермического распада аустенита, разделенных областью высокой устойчивости переохлажденного аустенита. Изотермический распад аустенита имеет два япно выраженных интервала превращений — превращение в пластинчатые (перлитное превращение) и превращение в игольчатые (беинитные превращения) структуры.