
- •1. Одноэлектронное приближение. Электронная конфигурация атома. Принципы заполнения одноэлектронных состояний.
- •2. Закон Рауля. Давление пара над идеальным раствором. Предельно разбавленные растворы. Закон Генри.
- •3. Гетерогенный катализ: основные стадии, энергетический профиль.
- •4. Расчёт электродных потенциалов по уравнению Нернста.
- •1. Электронное состояние атома как целого. Квантовые числа. Атомные
- •2. Энтропия и 2-й закон термодинамики. Термодинамическое и статистическое определения энтропии, их взаимосвязь.
- •3. Фотохимические реакции. Законы фотохимии. Квантовый выход. Примеры фотохимических реакций.
- •4. Анализ конкретной фазовой диаграммы двухкомпонентной системы.
- •Водородоподобные атомы. Уровни энергии и квантовые числа электрона.
- •2. Исходные постулаты термодинамики. Термические и калорические уравнения состояния.
- •3. Квазистационарное приближение в химической кинетике. Условия применимости, энергетические кривые.
- •4. Равновесный состав газовой смеси.
- •1. Электронные конфигурации переходных элементов 4-го периода и их ионов.
- •2. Коллигативные свойства растворов (электролиты и неэлектролиты).
- •3. Скорость химической реакции. Кинетическое уравнение. Закон действующих масс для элементарных реакций.
- •4. Энергии Гиббса химической реакции при различных температурах.
- •1. Электронные состояния двухатомных молекул. Характеристики кова-
- •2. Связь константы равновесия с изменением термодинамических функций в реакции. Зависимость константы равновесия от температуры. Принцип Ле Шателье.
- •3. Константа скорости. Порядок, псевдопорядок и молекулярность реакции. Экспериментальное определение порядка реакции и константы скорости.
- •1. Химическая связь и причины её образования. Кривые потенциальной энергии для двухатомной молекулы.
- •2. Электродные потенциалы, их зависимость от концентраций (активностей) ионов и температуры. Стандартные электродные потенциалы.
- •3. Тепловой эффект химической реакции. Закон Гесса. Энтальпия образования.
- •4. Порядок реакции по кинетическим данным.
- •1. Простейшие понятия теории молекулярных орбиталей. Метод молкао.
- •2. Электродвижущая сила (эдс), ее связь с термодинамическими функциями. Типы электрохимических ячеек.
- •3. Формальная кинетика реакций 1-го порядка. Решение прямой и обратной задачи.
- •4. Изменение энтропии в различных процессах (изменение температуры, объема, давления, фазовый переход, химическая реакция).
- •Теория мо. Электронные конфигурации молекул и молекулярных ионов водорода и гелия.
- •2. Сечения простейших фазовых диаграмм «температура – состав». Типичные диаграммы «жидкость – пар» (с азеотропом и без).
- •3. Энтальпия химической связи. Зависимость теплового эффекта реакции от температуры и давления.
- •4. Константы скорости в параллельных реакциях.
- •1. Межмолекулярные взаимодействия и их классификация. Сравнение межмолекулярных
- •2. Третий закон термодинамики. Абсолютная энтропия.
- •3. Влияние температуры на скорость реакции. Уравнение Аррениуса, его интегральная и дифференциальная формы. Опытная энергия активации.
- •4. Константа химического равновесия и равновесного состава смеси веществ.
- •Водородная связь и её характеристики. Примеры неорганических веществ с водородной связью.
- •2. Термодинамические системы и их классификация. Экстенсивные и интенсивные величины. Функции состояния и функции процесса. Термодинамические координаты и силы.
- •3. Механизмы реакций. Решение кинетических уравнений для последовательных реакций первого порядка.
- •4. Фазовые диаграммы одно- или двухкомпонентной системы на основе правила фаз Гиббса.
- •2. Фундаментальное уравнение Гиббса в переменных t, V. Критерии самопроизвольности процесса и равновесия.
- •2. Принцип независимости химических реакций. Составление и решение кинетических уравнений для обратимых реакций первого порядка.
- •4. Давления пара над чистым веществом и теплота фазового перехода.
- •1. Водородная связь и её характеристики. Влияние водородной связи на свойства органических веществ.
- •2. Химический потенциал, определение. Идеальные растворы. Термодинамика смешения. Активность и коэффициенты активности.
- •3. Механизм реакции. Составление и решение кинетических уравнений для параллельных реакций первого порядка.
- •4. Эмпирическая константа скорости и эффективная энергия активации сложной реакции.
- •1. Полиморфизм металлов (на примере железа или олова).
- •2. Внутренняя энергия и 1-й закон термодинамики в переменных t, V. Тепловой эффект процесса при постоянном объеме или давлении. Калорические коэффициенты.
- •3. Фотохимические реакции. Первичные процессы при возбуждении: фотофизические и фотохимические. Кинетика фотохимических реакций. Отличие фотохимических реакций от темновых.
- •4. Состав пара над идеальным раствором.
- •1. Основные типы кристаллических решёток металлов. Плотнейшие шаровые упаковки.
- •2. Фазовые диаграммы однокомпонентных систем. Уравнение Клапейрона-Клаузиуса.
- •3. Уравнения химических реакций. Стехиометрические соотношения. Химическая переменная. Энергетическая кривая химической реакции (элементарной и двухстадийной).
- •4. Квантовый выход фотохимической реакции.
- •1. Структура ионных кристаллов. Ионная модель.
- •2. Объединение 1-ого и 2-ого законов термодинамики. Фундаментальное уравнение Гиббса для закрытых и открытых систем.
- •4. Константа скорости для реакций целого порядка и определение энергии активации по температурной зависимости константы скорости.
- •1. Основные структурные типы ионных соединений: NaCl, CsCl, CaF2.
- •2. Химический потенциал компонента идеального раствора. Термодинамические функции образования идеального раствора.
- •3. Основные понятия катализа. Классификация каталитических реакций. Гомогенный катализ. Общий механизм катализа.
- •4. Анализ фазовой диаграммы одно- или двухкомпонентной системы на основе правила фаз Гиббса.
- •1. Энергия ионной кристаллической решётки. Цикл Борна-Габера.
- •2. Энтальпия и 1-ый закон термодинамики в переменных t, p. Тепловой эффект процесса при постоянном давлении. Изобарная теплоемкость.
- •3. Электроды и полуреакции. Основные типы электродов. Стандартные электродные потенциалы. Электродвижущая сила (эдс), ее связь с термодинамическими функциями.
- •4. Система кинетических уравнений по механизму реакции.
- •1. Радиусы атомов: ковалентные, металлические, ван-дер-ваальсовы. Радиусы ионов, способы их определения.
- •2. Стандартные состояния и термодинамические функции индивидуальных веществ. Оператор химической реакции. Изменение термодинамических функций в химических реакциях.
- •3. Параллельные обратимые реакции. Термодинамический и кинетический контроль.
- •4. Определение молярной массы растворенного вещества по коллигативным свойствам раствора.
- •1. Энергия ионной кристаллической решётки, её вычисление в рамках ионной модели.
- •2. Энтропия как функция состояния и как критерий направленности самопроизвольного процесса.
- •3. Условия химического равновесия. Закон действующих масс для идеально-газовой смеси. Константы равновесия и связь между ними.
- •3. Зависимость температуры кипения и плавления чистых веществ от давления. Уравнения Клапейрона и Клапейрона-Клаузиуса.
- •4. Расчёт плотности ионного кристалла по радиусам ионов и типу решётки.
4. Константа химического равновесия и равновесного состава смеси веществ.
K(T) = exp[-ΔrGoT/RT];
ΔrGoT= ΔrHoT - TΔrSoT;
ΔrHoT2= ΔrHoT1 + ∫T1T2ΔrcpdT;
ΔrSoT= 2SoT(CO2) – 2*SoT(CO) – SoT(O2). (на примере реакии 2CO+O2=2CO2)
Билет 10.
Водородная связь и её характеристики. Примеры неорганических веществ с водородной связью.
2. Термодинамические системы и их классификация. Экстенсивные и интенсивные величины. Функции состояния и функции процесса. Термодинамические координаты и силы.
Термодинамика – наука, изучающая взаимные переходы теплоты и работы в равновесных системах и при переходе к равновесию. Химическая термодинамика – раздел физической химии, в котором термодинамические методы применяются для анализа химических и физико-химических явлений: химических реакций, фазовых переходов и процессов в растворах.
Объект изучения термодинамики – термодинамическая система – материальный объект, выделенный из внешней среды с помощью реально существующей или воображаемой граничной поверхности и способный обмениваться с другими телами энергией и (или) веществом. Системы бывают:
• открытые, в которых существует обмен энергией и веществом с окружающей средой;
• закрытые, в которых существует обмен энергией с окружением, но нет обмена веществом;
• изолированные, в которых нет обмена с окружением ни энергией, ни веществом.
Состояние любой термодинамической системы может быть охарактеризовано количественно с помощью термодинамических переменных. Все они взаимосвязаны, и их условно делят на независимые переменные и термодинамические функции. Переменные, которые фиксированы условиями существования системы, и, следовательно, не могут изменяться в пределах рассматриваемой задачи, называют термодинамическими
параметрами. Различают переменные:
• внешние, которые определяются свойствами и координатами тел в окружающей среде и зависят от контактов системы с окружением, например, массы или количества компонентов n, напряженность электрического поля E; число таких переменных ограниченно;
• внутренние, которые зависят только от свойств самой системы, например, плотность ρ, внутренняя энергия U; в отличие от внешних переменных, число таких свойств неограниченно;
• экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем V, энергия U, энтропия S, теплоемкость C;
• интенсивные, которые не зависят от массы системы или числа частиц, например, температура T, плотность ρ, давление p. Отношение любых двух экстенсивных переменных является интенсивным параметром, например, парциальный мольный объем V или мольная доля x.
Среди термодинамических переменных выделяют обобщенные силы и обобщенные координаты.
Обобщенные силы
характеризуют состояние равновесия. К
ним относят давление p,
химический потенциал μ,электрический
потенциал
,
поверхностное натяжение σ. Обобщенные
силы – интенсивные параметры.
Обобщенные координаты – это величины, которые изменяются под действием соответствующих обобщенных сил. К ним относятся объем V, количество вещества n, заряд e, площадь Ω. Все обобщенные координаты – экстенсивные параметры.
Набор интенсивных термодинамических свойств определяет состояние системы. Различают следующие состояния термодинамических систем:
• равновесное, когда все характеристики системы постоянны и в ней нет потоков вещества или энергии. При этом выделяют:
– устойчивое (стабильное) состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние;
– метастабильное состояние, которое отличается от устойчивого тем, что некоторые конечные воздействия вызывают конечные изменения состояния, которые не исчезают при устранении этих воздействий;
• неравновесное (неустойчивое, лабильное) состояние, при котором всякое бесконечно малое воздействие вызывает конечное изменение состояния системы;
• стационарное, когда независимые переменные постоянны во времени, но в системе имеются потоки.
Если состояние системы изменяется, то говорят, что в системе происходит термодинамический процесс. Все термодинамические свойства строго определены только в равновесных состояниях. Особенностью описания термодинамических процессов является то, что они рассматриваются не во времени, а в обобщенном пространстве независимых термодинамических переменных, т.е. характеризуются не скоростями изменения свойств, а величинами изменений. Процесс в термодинамике – это последовательность состояний системы, ведущих от одного начального набора термодинамических переменных к другому – конечному.
Различают процессы:
• самопроизвольные, для осуществления которых не надо затрачивать энергию;
• несамопроизвольные, происходящие только при затрате энергии;
• обратимые, когда переход системы из одного состояния в другое и обратно может происходить через последовательность одних и тех же состояний, и после возвращения в исходное состояние в окружающей среде не остается макроскопических изменений;
• квазистатические, или равновесные, которые происходят под действием бесконечно малой разности обобщенных сил;
• необратимые, или неравновесные, когда в результате процесса невозможно возвратить и систему, и ее окружение к первоначальному состоянию.
В ходе процесса некоторые термодинамические переменные могут быть зафиксированы. В частности, различают изотермический (T = const), изохорный (V = const), изобарный (p = const) и адиабатический (Q = 0, δQ = 0) процессы.
Термодинамические функции разделяют на:
• функции состояния, которые зависят только от состояния системы и не зависят от пути, по которому это состояние получено;
• функции перехода, значение которых зависит от пути, по которому происходит изменение системы.
Примеры функций состояния: энергия U, энтальпия H = U = pdV, энергия Гельмгольца F= U – TS, энергия Гиббса G = H – TS, энтропия S. Термодинамические переменные – объем V, давление p, температуру T – также можно считать функциями состояния, т.к. они однозначно характеризуют состояние системы. Примеры функций перехода: теплота Q и работа W.
Функции состояния характеризуются следующими свойствами:
• бесконечно малое изменение функции f является полным дифференциалом (обозначается df);
• изменение функции
при переходе из состояния 1
в состояние 2
определяется
только этими состояниями:
• в результате любого циклического процесса функция состояния не
изменяется: