Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
строй вещ.doc
Скачиваний:
1
Добавлен:
18.09.2019
Размер:
2.93 Mб
Скачать

12 Вопрос

ЭЛЕКТРОННЫЙ ГАЗ

- теоретич. модель, описывающая поведение электронов проводимости в электронных проводниках. В модели Э. г. пренебрегают кулоновским взаимодействием между электронами. Оправданием пренебрежения кулоновским взаимодействием (на качеств. уровне) служит, во-первых, существование ионов кри-сталлич. решётки, эл.-статич. заряд к-рых в среднем компенсирует заряд электронов, а, во-вторых, экранирование зарядов, существенно уменьшающее радиус действия кулоновских сил.

Электроны движутся в периодич. поле кристаллич. решётки. Поэтому состояние отд. электрона определяется его квазиимпульсом p и номером энергетич. зоны s (см. Зонная теория). Закон дисперсии (зависимость энергии электрона в зоне s от квазиимпульса р)- сложная периодич. ф-ция. Э. г.- газ частиц со сложным законом дисперсии.

Как и свободные электроны, частицы Э. г. подчиняются Ферми - Дирака статистике. Э. г.- газ фермионов. Малое число электронов в полупроводниках (по сравнению с металлами) иногда позволяет для описания свойств Э. <г. в полупроводниках использовать Больцмана статистику.

Частицы Э. г. рассеиваются на фононах, друг на друге (межэлектронное рассеяние) и на любых нарушениях периодичности кристаллич. решётки (см. Рассеяние носителей заряда). Поэтому они имеют конечную длину свободного пробега l, конечное время жизни т = l/u, где u - тепловая скорость электрона. Чем лучше выполняются неравенства тем Э. г. ближе к идеальному газу.

Модель Э. г. позволяет вычислить многие термодина-мич. и кинетич. характеристики электронных проводников. В нек-рых случаях (в полупроводниках) Э. г. может иметь темп-ру, отличную от темп-ры решётки (см. Горячие электроны). Под воздействием высокочастотных эл.-магн. полей Э. <г. металлов и полупроводников (особенно в постоянном магн. поле) ведёт себя как электронная или электронно-дырочная плазма (см. Плазма твёрдых тел); об Э. г. под действием сильного давления см. в ст. Экстремальное состояние вещества.

Исторически первым и простейшим вариантом модели Э. <г. была теория металлов Друде - Лоренца, в к-рой Э. <г. рассматривался как идеальный газ (см. Друде теория металлов). Теорию Друде - Лоренца сменила Зоммерфельда теория металлов, в к-рой учтено вырождение Э. г. Теория Э. <г. по Друде - Лоренцу сохраняет своё значение для полупроводников, если принять во внимание, что число частиц Э. г. зависит от темп-ры, а эффективная масса носителей заряда отлична от массы свободного электрона. Этим учитывается взаимодействие электронов с кристаллич. решёткой.

В электронной теории металлов наряду с моделью Э. г. используется модель электронной ферми-жидкости, когда необходимо и возможно учесть межэлектронное взаимодействие (см. Квантовая жидкость). Реально это удаётся осуществить вблизи основного состояния электронной системы. При kT<< , где - ферми-энергия, термодина-мич. ф-лы и многие ф-лы физ. кинетики не изменяются при переходе от модели Э. г. к модели электронной ферми-жидкости, если под понимать энергию квазичастицы (её принято отсчитывать от энергии Ферми). Согласно теории ферми-жидкости, энергия квазичастицьг учитывает взаимодействие между электронами; заряд квазичастицы равен заряду свободного электрона; число квазичастиц равно числу частиц Э. г. В полупроводниках из-за малости числа частиц электронного газа взаимодействие между электронами несущественно.

Теория Друде — классическое описание движения электронов в металлах. Эта теория была предложена немецким физиком Паулем Друде через 3 года после открытия электрона как частицы — в 1900 году. Она отличается простотой и наглядностью, хорошо поясняет эффект Холла, удельную проводимость в постоянном и переменном токе и теплопроводность в металлах и поэтому до сегодняшнего дня актуальна.

Основные предположения

Э лектроны в металле рассматриваются как электронный газ, к которому можно применить кинетическую теорию газов. Считается, что электроны, как и атомы газа в кинетической теории, представляют собой одинаковые твердые сферы, которые движутся по прямым линиям до тех пор, пока не столкнутся друг с другом. Предполагается, что продолжительность отдельного столкновения пренебрежимо мала, и что между молекулами не действует никаких иных сил, кроме возникающих в момент столкновения. Так как электрон - отрицательно заряженная частица, то для соблюдения условия электронейтральности в твердом теле также должны быть частицы другого сорта - положительно заряженные. Друде предположил, что компенсирующий положительный заряд принадлежит гораздо более тяжелым частицам (ионам), которые он считал неподвижными. Во времена Друде не было ясно, почему в металле существуют свободные электроны и положительно заряженные ионы, и что эти ионы собой представляют. Ответы на эти вопросы смогла дать только квантовая теория твердого тела. Для многих веществ, однако, можно просто считать, что электронный газ составляют слабо связанные с ядром внешние валентные электроны, которые в металле "освобождаются" и получают возможность свободно передвигаться по металлу, тогда как атомные ядра с электронами внутренних оболочек (атомные остовы) остаются неизменными и играют роль неподвижных положительных ионов теории Друде.

. Несмотря на то, что плотность газа электронов проводимости примерно в 1000 раз больше плотности классического газа при нормальных температуре и давлении, и несмотря на присутствие сильного электрон-электронного и электрон-ионного взаимодействия в модели Друде для рассмотрения электронного газа в металлах почти без изменений применяются методы кинетической теории нейтральных разреженных газов.

Основные предположения теории Друде.

В интервале между столкновениями не учитывается взаимодействие электрона с другими электронами и ионами. Иными словами, принимается, что в отсутствие внешних электромагнитных полей каждый электрон движется с постоянной скоростью по прямой линии. Далее, считают, что в присутствии внешних полей электрон движется в соответствии с законами Ньютона; при этом учитывают влияние только этих полей, пренебрегая сложными дополнительными полями, порождаемыми другими электронами и ионами. Приближение, в котором пренебрегают электрон-электронным взаимодействием в промежутках между столкновениями, известно под названием приближения независимых электронов. Соответственно приближение, в котором пренебрегают электрон-ионным взаимодействием, называется приближением свободных электронов.

В модели Друде, как и в кинетической теории, столкновения — это мгновенные события, внезапно меняющие скорость электрона. Друде связывал их с тем, что электроны отскакивают от непроницаемых сердцевин ионов (а не считал их электрон-электронными столкновениями по аналогии с доминирующим механизмом столкновений в обычном газе).

Предполагается, что за единицу времени электрон испытывает столкновение (т. е. внезапное изменение скорости) с вероятностью, равной . Имеется в виду, что для электрона вероятность испытать столкновение в течение бесконечно малого промежутка времени равна просто . Время называют временем релаксации, или временем свободного пробега; оно играет фундаментальную роль в теории проводимости металлов. Из этого предположения следует, что электрон, выбранный наугад в настоящий момент времени, будет двигаться в среднем в течение времени до его следующего столкновения и уже двигался в среднем в течение времени с момента предыдущего столкновения. В простейших приложениях модели Друде считают, что время релаксации не зависит от пространственного положения электрона и его скорости.

Предполагается, что электроны приходят в состояние теплового равновесия со своим окружением исключительно благодаря столкновениям. Считается, что столкновения поддерживают локальное термодинамическое равновесие чрезвычайно простым способом: скорость электрона сразу же после столкновения не связана с его скоростью до столкновения, а направлена случайным образом, причем ее величина соответствует той температуре, которая превалирует в области, где происходило столкновение. Поэтому чем более горячей является область, где происходит столкновение, тем большей скоростью обладает электрон после столкновения.

Формула Друде

Кинетическое уравнение Больцмана в приближении времени релаксации приводит для проводимости электронного газа к формуле Друде:

— электрическая удельная проводимость

— концентрация электронов

— элементарный заряд

— время релаксации по импульсам (время, за которое электрон «забывает» о том в какую сторону двигался)

— эффективная масса электрона

Эта формула применима также к электронному и дырочному газу в полупроводниках (Формулу можно записать в другом виде для вырожденного электронного или дырочного газа , где — коэффициент диффузии электронов или дырок, а — плотность электронных или дырочных состояний, причём все физические величины берутся на поверхности Ферми).

Некоторые формулы

ускорение электрона между двумя соударениями из второго закона Ньютона:

средняя скорость электрона:

Следует, однако, иметь в виду, что мгновенная скорость электрона в металле может быть большой и определяется уровнем Ферми.

плотность тока:

Закон Ома:

подвижность:

тепловая энергия электрона:

Недостатки теории Друде

Средняя длина свободного пробега электрона оказывается на несколько порядков больше, чем шаг кристаллической решётки. Объяснение этому даётся в квантовой теории, где показывается, что в идеальном кристалле при нулевой температуре электрон не рассеивается вообще, но в реальном кристалле он рассеивается на примесях, дефектах и фононах, возмущениях кристаллической решетки.

Теория Друде не объясняет температурную зависимость постоянной Холла и её положительные значения для ряда материалов, а также диэлектрические свойства алмаза и металлические — графита.