
17 Вопрос
Собственная проводимость
Проводимость собственных полупроводников
Рассмотрим механизм на примере кремния. Кремний обладает атомной пространственной решеткой с ковалентным типом связи между атомами. При абсолютных температурах, близких к абсолютному нулю, все связи являются заполненными, т.е. свободных заряженных частиц в кристалле нет. При нагревании или облучении некоторые парноэлектронные связи разрываются, появляются свободные электроны и вакантные места, называемые дырками.
У собственных полупроводников число появившихся при разрыве связей электронов и дырок одинаково, т.е. проводимость собственных полупроводников в равной степени обеспечивается свободными электронами и дырками.
Проводимость примесных полупроводников
Если внедрить в полупроводник примесь с валентностью большей, чем у собственного полупроводника, то образуется донорный полупроводник.(Например, при внедрении в кристалл кремния пятивалентного мышьяка. Один из пяти валентных электронов мышьяка остается свободным). В донорном полупроводнике электроны являются основными, а дырки неосновными носителями заряда. Такие полупроводники называют полупроводниками n- типа, а проводимость электронной.
Если внедрять в полупроводник примесь с валентностью меньшей, чем у собственного полупроводника, то образуется акцепторный полупроводник. (Например, при внедрении в кристалл кремния трехвалентного индия. У каждого атома индия не хватает одного электрона для образования парноэлектронной связи с одним из соседних атомов кремния. Каждая из таких незаполненных связей является дыркой). В акцепторных полупроводниках дырки являются основными, а электроны неосновными носителями заряда. Такие полупроводники называются полупроводниками p- типа, а проводимость дырочной.
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
где
- удельное сопротивление,
— подвижность электронов,
— подвижность дырок,
— их концентрация, q — элементарный
электрический заряд (1,602·10−19 Кл).
Для собственного полупроводника
концентрации носителей совпадают и
формула принимает вид:
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторных примесей.
Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.
18 Вопрос
Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.
Э
ффект
Холла
1. Электроны
2. Зонд
3. Магниты
4. Магнитное поле
5. Источник тока
Свойства
В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле B течёт электрический ток под действием напряжённости E. Магнитное поле будет отклонять носители заряда (для определённости электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости[1] будет служить условие, что при этом электрон не начнёт двигаться по циклоиде.
Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска и положительного возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1 не скомпенсирует магнитную составляющую силы Лоренца:
Скорость электронов можно выразить через плотность тока:
где n — концентрация носителей заряда. Тогда
Коэффициент
пропорциональности между
и
называется коэффициентом (или константой)
Холла. В таком приближении знак постоянной
Холла зависит от знака носителей заряда,
что позволяет определять их тип для
большого числа металлов. Для некоторых
металлов (например, таких, как свинец,
цинк, железо, кобальт, вольфрам), в сильных
полях наблюдается положительный знак
,
что объясняется в полуклассической и
квантовой теориях твёрдого тела.
Аномальный эффект Холла
Случай появления напряжения (электрического поля) в образце, перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля (то есть явление, полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля), называется аномальным эффектом Холла.
Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью[2].
Квантовый эффект Холла
В сильных магнитных полях в плоском проводнике (то есть в квазидвумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к появлению квантового эффекта Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.
Спиновый эффект Холла
В случае отсутствия магнитного поля в немагнитных проводниках может наблюдаться отклонение носителей тока с противоположными направлениями спинов в разные стороны перпендикулярно электрическому полю. Это явление, получившее название спинового эффекта Холла, было теоретически предсказано Дьяконовым и Перелем в 1971 году. Говорят о внешнем и внутреннем спиновых эффектах. Первый из них связан со спин-зависимым рассеянием, а второй — со спин-орбитальным взаимодействием.
Магнитосопротивление
Эдвин Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчёты по которой приводились выше. Однако при более строгих расчётах и в сильных полях магнетосопротивление проявляется достаточно хорошо.
Применение
Датчик Холла, используемый для измерения силы тока в проводнике. В отличие от трансформатора тока, измеряет также и постоянный ток.
Эффект Холла, в некоторых случаях, позволяет определить тип носителей заряда (электронный или дырочный) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников.
На основе эффекта Холла работают датчики Холла: приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли ДПР (датчика положения ротора). ДПР реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в коллекторном ДПТ.
Также на основе эффекта Холла работают некоторые виды ионных реактивных двигателей.