
1 Вопрос
Статистика Максвелла — Больцмана — статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г. австрийским физиком Л. Больцманом.
Вывод распределения
Из общего распределения Гиббса. Рассмотрим систему частиц, находящуюся в однородном поле. В таком поле каждая молекула идеального газа обладает полной энергией
,
где
— кинетическая энергия её поступательного
движения, а
— потенциальная энергия во внешнем
поле, которая зависит от её положения.
Подставим это выражение для энергии в
распределение Гиббса для молекулы
идеального газа
(где
— вероятность того, что частица находится
в состоянии со значениями координат
и импульсов
,
в интервале
)
имеем:
,
где интеграл состояний равен:
интегрирование ведется по всем возможным значениям переменных. Далее интеграл состояний можно написать в виде:
мы
находим, что нормированное на единицу
распределение Гиббса для молекулы газа
при наличии внешнего поля имеет вид:
.
Полученное распределение вероятностей, характеризующее вероятность того, что молекула имеет данный импульс и находится в данном элементе объёма, носит название распределение Максвелла — Больцмана.
Некоторые свойства
При рассмотрении распределения Максвелла — Больцмана, бросается в глаза важное свойство — его можно представить как произведение двух множителей:
Первый множитель есть не что иное, как распределение Максвелла, оно характеризует распределение вероятностей по импульсам. Второй множитель зависит только лишь от координат частиц и определяется видом её потенциальной энергии. Он характеризует вероятность обнаружения частицы в объёме dV.
Согласно теории вероятностей, распределение Максвелла — Больцмана можно рассматривать как произведение вероятностей двух независимых событий — вероятность данного значения импульса и данного положения молекулы. Первая из них:
представляет распределение Максвелла; вторая вероятность:
— распределение Больцмана. Очевидно, что каждое из них нормировано на единицу.
Распределение Больцмана является частным случаем канонического распределения Гиббса для идеального газа во внешнем потенциальном поле, так как при отсутствии взаимодействия между частицами распределение Гиббса распадается на произведение распределений Больцмана для отдельных частиц.
Независимость вероятностей дает важный результат: вероятность данного значения импульса совершенно не зависит от положения молекулы и, наоборот, вероятность положения молекулы не зависит от её импульса. Это значит что распределение частиц по импульсам (скоростям) не зависит от поля, другими словами остается тем же самым от точки к точке пространства, в котором заключен газ. Меняется лишь вероятность обнаружения частицы или, что то же самое, число частиц.
2 Вопрос
И
зотермы
реального газа (схематично)
Синие — изотермы при температуре ниже критической. Зелёные участки на них — метастабильные состояния.
Участок левее точки F — нормальная жидкость.
Точка F — точка кипения.
Прямая FG — равновесие жидкой и газообразной фазы.
Участок FA — перегретая жидкость.
Участок F′A — растянутая жидкость (p<0).
Участок AC — аналитическое продолжение изотермы, физически невозможен.
Участок CG — переохлаждённый пар.
Точка G — точка росы.
Участок правее точки G — нормальный газ.
Площади фигуры FAB и GCB равны.
Красная — критическая изотерма.
K — критическая точка.
Голубые — сверхкритические изотермы
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.
Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона:
где p — давление; V - объем T — температура; Zr = Zr (p,T) — коэффициент сжимаемости газа; m - масса; М — молярная масса; R — газовая постоянная.
[править]
Физика реального газа
Чтобы подробнее установить условия, когда газ может превратиться в жидкость и наоборот, простых наблюдений за испарением или кипением жидкости недостаточно. Надо внимательно проследить за изменением давления и объёма реального газа при разных температурах.
Медленно будем сжимать газ в сосуде с поршнем, например сернистый ангидрид (SO2). Сжимая его, мы выполняем над ним работу, вследствие чего внутренняя энергия газа увеличится. Когда мы хотим, чтобы процесс происходил при постоянной температуре, то сжимать газ надо очень медленно, чтобы теплота успевала переходить от газа в окружающую среду.
Выполняя этот опыт, можно заметить, что сначала при большом объёме давление с уменьшением объёма увеличивается согласно закону Бойля — Мариотта. В конце концов, начиная с какого-то значения, давление не будет изменяться, несмотря на уменьшение объёма. На стенках цилиндра и поршня образуются прозрачные капли. Это означает, что газ начал конденсироваться, то есть переходить в жидкое состояние.
Продолжая сжимать содержимое цилиндра, мы будем увеличивать массу жидкости под поршнем и соответственно, будем уменьшать массу газа. Давление, которое показывает манометр, будет оставаться постоянным до тех пор, пока всё пространство под поршнем не заполнит жидкость. Жидкости мало сжимаемы. Поэтому дальше, даже при незначительном уменьшении объёма, давление быстро будет возрастать.
Поскольку весь процесс происходит при постоянной температуре T, кривую, что изображает зависимость давления р от объёма V, называют изотермой. При объёме V1 начинается конденсация газа, а при объёме V2 она заканчивается. Если V > V1 то вещество будет в газообразном состоянии, а при V < V2 — в жидком.
Опыты показывают, что такой вид имеют изотермы и всех других газов, если их температура не очень высокая.
В этом процессе, когда газ превращается в жидкость при изменении его объёма от V1 к V2, давление газа остаётся постоянным. Каждой точке прямолинейной части изотермы 1—2 соответствует равновесие между газообразным и жидким состояниями вещества. Это означает, что при определённых T и V количество жидкости и газа над ней остаётся неизменным. Равновесие имеет динамический характер: количество молекул, которые покидают жидкости, в среднем равняется количеству молекул, которые переходят из газа в жидкость за одно и то же время.
Также существует такое понятие как критическая температура, если газ находится при температуре выше критической (индивидуальна для каждого газа, например для углекислого газа примерно 304 К), то его уже невозможно превратить в жидкость, какое бы давление к нему не прилагалось. Данное явление возникает вследствие того, что при критической температуре силы поверхностного натяжения жидкости равны нулю. Если продолжать медленно сжимать газ при температуре большей критической, то после достижения им объёма, равного приблизительно четырем собственным объёмам молекул, составляющих газ, сжимаемость газа начинает резко падать.
Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.
Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры, но и объёма.
Уравнение состояния
Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.
Для одного моля газа Ван-дер-Ваальса оно имеет вид:
Где, p — давление, V — молярный объём, T — абсолютная температура, R — универсальная газовая постоянная.
Видно, что это уравнение фактически
является уравнением состояния идеального
газа с двумя поправками. Поправка
учитывает силы притяжения между
молекулами (давление на стенку уменьшается,
т.к. есть силы, втягивающие молекулы
приграничного слоя внутрь), поправка
— силы отталкивания (из общего объёма
вычитаем объём, занимаемый молекулами).
Для
молей газа Ван-дер-Ваальса уравнение
состояния выглядит так:
Где V — объём,
Внутренняя энергия газа Ван-дер-Ваальса
Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы, при разведении молекул на бесконечность:
Внутренняя энергия газа Ван-дер-Ваальса складывается из его кинетической энергии (энергии теплового движения молекул) и только что нами посчитанной потенциальной. Так, для одного моль газа:
где
— молярная теплоёмкость при постоянном
объёме, которая предполагается не
зависящей от температуры.
Критические параметры
Критическими параметрами газа называются значения его макропараметров (давления, объёма и температуры) в критической точке, т.е. в таком состоянии, когда жидкая и газообразная фазы вещества неразличимы. Найдем эти параметры для газа Ван-дер-Ваальса, для чего преобразуем уравнение состояния:
Мы получили уравнение третьей степени относительно V.
В критической точке все три корня уравнения сливаются в один, поэтому предыдущее уравнение эквивалентно следующему:
Приравняв коэффициенты при соответствующих степенях V, получим равенства:
Из них вычислим значения критических параметров...
...и критического коэффициента:
Приведённые параметры
Приведённые параметры определяются как отношения
Если подставить в уравнение Ван-дер-Ваальса
получится приведённое уравнение
состояния.
Стоит отметить, что если вещества обладают двумя одинаковыми приведёнными параметрами из трёх, то и третьи приведённые параметры у них совпадают.
[править]
Недостатки уравнения Ван-дер-Ваальса
1. Для реальных веществ
2. Для реальных веществ
(скорее,
)
3. Уравнение Ван-дер-Ваальса расходится с экспериментом в области двухфазных состояний.