- •Понятие о форме и размерах Земли. Уровенная поверхность и её роль в геодезии. Понятие о геоиде.
- •Система высот, принятая в России.
- •Системы координат, применяемые в геодезии. Система Гаусса-Крюгера.
- •Масштабы планов и карт.
- •Порядок работы с поперечным масштабом.
- •Устройство и классификация теодолитов.
- •Типы отсчетных микроскопов оптических теодолитов.
- •Зрительные трубы геодезических приборов.
- •Поверки теодолита 2т30п.
- •Измерение горизонтальных углов полным приемом.
- •Устройство вертикального круга теодолита 2т30п и формулы для определения места нуля (мо) вертикального круга и углов наклона.
- •Ориентирование линий.
- •2 Дирекционные углы α,
- •3 Румбы r.
- •13.Истинный и магнитный меридианы. Азимуты и румбы.
- •14. Дирекционные углы и их связь с румбами.
- •15. Опорные геодезические сети.
- •16. Методы создания плановых и высотных геодезических сетей.
- •Виды линейных измерений, закрепление точек, вешение линий.
- •Порядок измерения длин линий рулеткой (мерной лентой).
- •Непосредственные и косвенные измерения расстояний. Введение поправок при линейных измерениях.
- •Виды оптических дальномеров (нитяный дальномер). Понятие о свето- и радиодальномерах.
- •Определение неприступного расстояния.
- •Сущность и способы геометрического нивелирования.
- •Устройство и поверки нивелира.
- •Порядок работы на станции при техническом нивелировании. Контроль. Связующие и промежуточные точки.
- •Определение невязки превышений и её распределение в разомкнутом нивелирном ходе.
- •Нивелирование поверхности по квадратам.
- •Составление картограммы земляных работ.
- •Виды съёмок.
- •Теодолитная съемка (полевые и камеральные работы).
- •Полевые работы при прокладке теодолитного хода.
- •Угловая невязка и её распределение в замкнутом теодолитном ходе.
- •Вычисление дирекционного угла последующей стороны теодолитного хода.
- •Вычисление приращений и координат замкнутого теодолитного хода. Контроли.
- •Вычисление приращений и координат разомкнутого теодолитного хода, опирающегося на «твердые» точки и стороны. Контроли вычислений.
- •Съемка характерных точек линейной и угловой засечками.
- •Построение плана (сетка, накладка точек, нанесение ситуации).
- •Сущность тахеометрической съёмки.
- •Тригонометрическое нивелирование.
- •Формы рельефа. Способы изображения рельефа на картах и планах. Горизонталь и её свойства.
- •Условные знаки планов и карт.
- •Геодезические работы при изысканиях железных дорог. Разбивка трассы
- •Разбивка пикетажа при трассировании.
- •Нивелирование трассы и поперечников
- •Журнал нивелирования
- •Особые случаи нивелирования
- •Составление продольного профиля ж/д трассы.
- •Проектирование по продольному профилю ж/д трассы.
- •Расчет основных элементов кривой и вставка её в пикетаж.
- •Детальная разбивка кривых методом координат от тангенсов на ж/д.
- •Задачи, решаемые по топографической карте.
- •Определение прямоугольных и географических координат точки по карте, дирекционного угла и расстояния.
- •Виды геодезических измерений (равноточные, неравноточные).
- •Виды ошибок при геодезических измерениях (грубые, систематические, случайные).
- •Аэрофотосъемка. Летно-съемочные работы.
- •Аэрофотосъемка. Геодезические работы.
- •Способы определения площадей (аналитический, механический, графический).
- •Оси сооружений.
- •Способы подготовки геодезических данных для выноса сооружений на местность (аналитический, графический, графо-аналитический).
- •Вынесение на местность проектного угла.
- •Построение на местности проектной линии.
- •Определение высоты сооружения.
- •Вынос на местность проектной отметки.
- •Вынесение на местность линии заданного уклона.
- •Передача отметки на дно котлована.
- •Понятие об исполнительной съёмке.
- •Наблюдения за деформациями сооружений.
- •Общие сведения по гис.
- •Назначение и область применения гис.
- •Основные определения в гис (атрибутивная информация, оверлей, пространственные данные, метаданные).
- •Состав гис (аппаратное, программное обеспечение, сбор данных).
- •Аппаратные средства реализации гис
- •Программные средства реализации гис
- •Методы сбора информации.
- •Классификация гис.
- •Глобальные навигационные спутниковые системы глонасс, gps. Основные принципы построения и особенности создания глонасс и gps.
- •Абсолютные методы позиционирования при использовании гнсс.
- •Дифференциальные методы измерений, применяющиеся при использовании спутниковой аппаратуры позиционирования.
- •Факторы, влияющие на точность определения координат.
- •Классификация спутниковой аппаратуры позиционирования.
- •Основные сегменты гнсс. Глобальная навигационная спутниковая система позиционирования.
- •Мобильное лазерное сканирование.
- •Наземное стационарное лазерное сканирование.
- •Инерциальные системы. Принцип работы и устройство.
- •Измерительные средства, созданные на базе гис-технологий и гнсс. Аппаратно-программный комплекс (апк) «Профиль».
- •Цифровые карты. Основные отличия электронных карт от цифровых.
- •По теодолитам:
- •По нивелирам:
- •По топографическим планам и картам:
-
Мобильное лазерное сканирование.
Мобильное лазерное сканирование – один из самых высокотехнологичных на сегодняшний день методов съемки. Система лазерного сканирования объектов позволяет обеспечить быстрое получение точных моделей любых реальных объектов с любой степенью детализации.
Это метод, позволяющий создать цифровую модель всего окружающего пространства, представив его набором точек с пространственными координатами.
Съемка выполняется с наземного или водного носителя в непрерывном режиме. Метод допускает ограниченное кратковременное пребывание в закрытых средах (проезд под мостами, короткие тоннели). МЛС идеально подходит для городских территорий.
Принцип работы
Принцип работы мобильного лазерного сканирования достаточно
прост. Высокоскоростной лазерный дальномер или его отклоняющее зеркало устанавливают на вращающейся основе (обычно это называется «лазерная головка»). За один оборот головки дальномер делает тысячи измерений,
что даёт «разрез» окружающего пространства в одной плоскости
Преимущества технологии:
-
Возможность получения трехмерных моделей местности через два часа после съемки
-
Съемка дорожного полотна, ЛЭП, всех придорожных сооружений и объектов в полосе дороги (мостов, туннелей, водоемов, растительности)
-
Точность пространственных координат 1-2 см, плотность точек 120 на квадратный метр
-
Средняя скорость движения съемочного комплекса - 70 км/час
-
Возможность производить работы на дорогах, не мешая транспортному потоку
-
Съемка около 700 погонных километров дорог за один рабочий день
-
Работа в любое время суток.
Недостатки: не доступны для съемки крыши объектов, объекты рядом с носителем (заборы, кусты) могут быть препятствием.
-
Наземное стационарное лазерное сканирование.
Система наземного лазерного сканирования состоит из НЛС(Наземный лазерный сканер) и полевого персонального компьютера со специализированным программным обеспечением. НЛС состоит из лазерного дальномера, адаптированного для работы с высокой частотой, и блока развертки лазерного луча. В качестве блока развёртки в НЛС выступают сервопривод и полигональное зеркало или призма. Сервопривод отклоняет луч на заданную величину в горизонтальной плоскости, при этом поворачивается вся верхняя часть сканера, которая называется головкой. Развёртка в вертикальной плоскости осуществляется за счёт вращения или качания зеркала.
В процессе сканирования фиксируется направление распространения лазерного луча и расстояние до точек объекта. Результатом работы НЛС является растровое изображение - скан, значения пикселей которого представляют собой элементы вектора со следующими компонентами: измеренным расстоянием, интенсивностью отражённого сигнала и RGB-составляющей, характеризующей реальный цвет точки. Для большинства моделей НЛС характеристики реального цвета для каждой точки получается с помощью неметрической цифровой камеры.
Другой формой представления результатов наземного лазерного сканирования является массив точек лазерных отражений от объектов, находящихся в поле зрения сканера, с пятью характеристиками, а именно пространственными координатами (x,y,z), интенсивностью и реальным цветом.
В основу работы лазерных дальномеров, используемых в НЛС, положены импульсный и фазовый безотражательные методы измерения расстояний, а также метод прямой угловой развёртки (триангуляционный метод).
Преимущества наземного лазерного сканирования
Помимо высокой степени автоматизации, наземное лазерное сканирование обладает также следующими достоинствами по отношению к другим способам получения пространственной информации:
-
возможность определения пространственных координат точек объекта в полевых условиях;
-
трёхмерная визуализация в режиме реального времени, позволяющая на этапе производства полевых работ определить «мёртвые» зоны;
-
неразрушающий метод получения информации;
-
отсутствие необходимости обеспечения сканирования точек объекта с двух центров проектирования (стояния), в отличие от фотограмметрического способа;
-
высокая точность измерений;
-
принцип дистанционного получения информации обеспечивает безопасность исполнителя при съёмке труднодоступных и опасных районов;
-
высокая производительность НЛС сокращает время полевых работ при создании цифровых моделей объектов, что делает данную технологию более экономически выгодной по сравнению с другими;
-
работы можно выполнять при любых условиях освещения, то есть днём и ночью, так как сканеры являются активными съёмочными системами;
-
высокая степень детализации;
-
многоцелевое использование результатов лазерного сканирования.
