
- •Дисциплина «Системное программирование» Теоретические вопросы
- •Операционные системы: история
- •Системные вызовы управления терминалом
- •Операционные системы: назначение и основные функции
- •Управление процессами в операционных системах
- •Конкуренция процессов
- •Базовые примитивы доступа к файлам
- •Файлы с несколькими именами
- •Каталоги, файловые системы и специальные файлы
- •Базовые примитивы для работы с процессами.
- •Обработка сигналов в unix Нормальное и аварийное завершение
- •Примитивы межпроцессного взаимодействия: программные каналы.
- •Дополнительные средства межпроцессного взаимодействия в unix.
- •14. Напишите аналог команды ls –l
- •15. Напишите «часы», выдающие текущее время каждые 3 секунды
- •16. Напишите программу, которая ожидает ввода с клавиатуры в течение 10 секунд.Если ничего не введено – печатает «Нет ввода», иначе – «Спасибо».
- •17. Используя файловую систему /proc, получите информацию об открытых всеми процессами файлах
- •18. Напишите функцию mysleep(n), задерживающую выполнение программы на n секунд.
- •19. Составьте программу вывода строк файла в инверсном отображении
- •20. Создайте аналог команды df
- •21. Напишите программу создания и записи образов дискет
- •22. Напишите функции включения и выключения режима эхо-отображения набираемых на клавиатуре символов
- •23. Напишите программу для запуска команды ls в качестве дочернего процесса
- •24. Создайте два процесса, взаимодействующих через программный канал.
- •25.Создайте аналог команды sync
- •Понятие алгоритма. Свойства, способы задания, основные структуры алгоритма. Понятие о структурном подходе к разработке алгоритма.
- •Алгоритмическая структура цикл. Типы циклов. Способы управления циклами. Итерационные циклы. Простые и вложенные циклы.
- •Типы данных в языке Паскаль. Действия над ними. Стандартные типы данных и типы пользователя.
- •Операторы циклов в языке Паскаль. Примеры использования.
- •Цикл с предусловием
- •5.Условный оператор и оператор выбора вариантов в языке Паскаль. Структурная схема. Примеры использования.
- •6 Структурные типы данных. Массивы. Записи, вариантные, вложенные.
- •7.Обработка строковых данных в Паскале. Особенности использования.
- •8.Процедуры и функции в Паскале. Особенности использования.
- •Стандартные файлы и файлы пользователя в Паскале. Типы файлов. Процедуры и функции для работы с файлами.
- •10.Прямая и косвенная рекурсия. Особенности использования.
- •11.Структура языка Паскаль. Структура программ на языке Паскаль.
- •Модульное программирование. Стандартные модули. Назначение и использование.
- •Образцы решений задач
- •1. Написать программу для вычисления функции:
- •2. Сформировать двухмерный массив, состоящий из n X n элементов.
- •5. Задан текст s. Сколько раз в тексте встречается заданное слово (слова разделены пробелами)
- •Дисциплина «Основы баз данных и знаний»
- •1. Архитектура бд. Понятие 3-вой архитектуры бд. Ее преимущества. Внешний уровень. Концептуальный уровень. Внутренний уровень.
- •2. Классификация моделей данных.
- •3. Иерархическая модель. Преимущества и недостатки иерархических структур.
- •4. Сетевая модель данных.
- •5. Реляционная модель данных.
- •6. Нормализация. Пять нормальных форм.
- •7. Физические модели бд.
- •8. Файловые структуры. Файлы прямого доступа. Файлы последовательного доступа.
- •9. Индексные файлы. Индексно-прямые файлы. Индексно-последовательные файлы.
- •10. Распределенные субд. Распределенная обработка данных. Параллельные субд.
- •11. Преимущества и недостатки сурбд.
- •12 Правил Дейта для сурбд.
- •12. Объектно-ориентированные субд. Требования к оосубд.
- •13. Объектно-реляционные субд.
- •14. Структура языка sql.
- •15. Типы данных языка sql.
- •16. Создание схем, бд, таблиц операторами языка sql.
- •17. Индексация в субд. Типы индексов. Создание и удаление индекса операторами языка sql.
- •18. Редактирование данных в таблице бд операторами языка sql.
- •19. Построение запросов операторами языка sql.
- •20. Понятие агрегирующих функций.
- •21. Объединение таблиц. Построение многотабличных запросов операторами языка sql.
- •22. Субд Access. Понятия таблицы, запроса, формы, отчета, макроса.
- •Примеры решений задач
- •Дисциплина «Организация и функционирование эвм»
- •Характеристики жесткого диска.
- •2.Структура дискового сектора. Коды исправления ошибок ecc.
- •3.Назначение коэффициента чередования секторов и коэффициента перекоса головки.
- •4.Сравнительная характеристика интерфейсов жестких дисков.
- •5.Позиционирование магнитной головки. Виды сервосистем.
- •6.Кэширование диска. Виды кэша. (Кэш считывания, кэш со сквозной записью, кэш с отложенной записью и элеваторный кэш).
- •7.Форматирование жесткого диска. Физическое форматирование. Организация разделов на жестком диске.
- •8.Логическое форматирование. Таблица размещения файлов, ее виды.
- •9. Основная оперативная память. Динамическая память, принцип действия запоминающих ячеек. Архитектура динамической памяти, виды сигналов.
- •Типы динамической памяти. Асинхронная, синхронная память.
- •Модули памяти. Организация банков памяти.
- •12.Статическая память, ее разновидности. Кэш-память. Первичный и вторичный кэш.
- •13.Энергонезависимая память, типы памяти. Флэш-память.
- •14.Логическая структура памяти пэвм.
- •15.Сравнительная характеристика видов оптических дисков.
- •16.Сравнительная характеристика видов мониторов.
- •17.Текстовый и графический режим работы монитора. Формирование цвета.
- •18.Сравнительная характеристика видов принтеров.
- •«Теория автоматического управления»
- •Классификация сау
- •Связь входа и выхода. Способы построения моделей. Переходная функция и импульсная характеристика.
- •Типовые звенья линейных систем (усилитель, апериодическое звено, интегрирующее звено, колебательное звено, звено запаздывания).
- •4. Типовые звенья линейных систем (усилитель, апериодическое звено, интегрирующее звено, колебательное звено, звено запаздывания).
- •5. Частотные характеристики. Понятие лачх и лфчх.
- •6. Логарифмические частотные характеристики типовых линейных звеньев.
- •7. Структурные схемы и правила их преобразования.
- •8. Требования к системам автоматического управления (перечислить). Понятие точности управления.
- •9. Частотные критерии устойчивости. Критерий Найквиста.
- •10. Алгебраические критерии устойчивости. Критерий Гурвица. Критерий Вишнеградского.
- •11. Оценка качества системы. Запасы устойчивости.
- •12. Синтез регуляторов. Задачи синтеза
- •13. Синтез линейны непрерывных сау. Коррекция сау
- •14. Разновидности и свойства сау в зависимости от параметров синтеза.
- •15. Приведение задач тау к нулевым начальным условиям. Линеаризация математического описания системы.
- •16. Математические модели. Способы их построения. Линейность и нелиней-ность систем и моделей.
- •17. Преобразование произвольного сигнала линейным звеном
- •18. Интегральные оценки качества переходных процессов: линейные, квадра-тичные.
- •19. Типовые линейные законы регулирования. Виды регуляторов.
- •20. Расчет оптимальных параметров настройки регуляторов.
- •8.Характеристическое уравнение замкнутой системы
15. Приведение задач тау к нулевым начальным условиям. Линеаризация математического описания системы.
В задачах анализа движения линеаризацию системы под действием случайных возмущений часто используются математические модели вида (2.1), правые части которых представляют гладкие многомерные нелинейности, допускающие отыскание производных до второго порядка включительно. В этом случае выполняется линеаризация правых частей дифференциальных уравнений в окрестности математических ожиданий фазовых переменных MX(t) и математических ожиданий случайных возмущений Mx (t) [2] :
Где
-матрицы
частных производных размеров nxn
и nxm,
соответственно, найденные для x=Mx,
x
=Mx
; D
x(t)=x(t)-Mx(t);
D
x
( t)
= x
( t)
-Mx
( t)
.
16. Математические модели. Способы их построения. Линейность и нелиней-ность систем и моделей.
Среди математических моделей выделяют модели, решающие задачи оптимального формирования портфеля и прогнозирования.
Основной задачей в процессе оптимального формирования портфеля ценных бумаг, является задача распределения инвестором определенной суммы денег по различным альтернативным вложениям (например, различные группы акций) с целью максимизации доходности. Следует понимать, что любое вложение капитала связано не только с ожиданием получения дохода, но и с постоянной опасностью проигрыша, а значит, в оптимизационных задачах по выбору портфеля ценных бумаг необходимо учитывать риск. В принципе, для создания портфеля ценных бумаг достаточно инвестировать деньги в какой-либо один вид финансовых активов. Но, такой однородный по содержанию портфель будет нести высокую норму риска. Гораздо более распространенный формой является так называемый диверсифицированный портфель, т.е. портфель с разнообразными ценными бумагами. Использование диверсифицированного портфеля устраняет разброс в нормах доходности различных финансовых активов и снижает риски. Иными словами, портфель, состоящий из акций разноплановых компаний, обеспечивает стабильность получения положительного результата. В общем случае задача оптимизации портфеля состоит в выборе такого распределения средств между активами, при котором происходит максимизация прибыли при заданных ограничениях на уровень риска.
Помимо оптимального формирования портфеля ценных бумаг существует еще большой класс задач, связанных с прогнозированием.
На практике математические модели редко применяются для работы с российскими акциями. Причиной тому является низкая эффективность применения математического аппарата в условиях нестабильности.
Линейность или нелинейность. Оно обычно расшифровывается как линейная (нелинейная) зависимость от входов операторов S(линейность или нелинейность параметров состояния) или V(линейность или нелинейность модели в целом). Линейность может являться как естественным, хорошо соответствующим природе, так и искусственным (вводимым для целей упрощения) свойством модели.
17. Преобразование произвольного сигнала линейным звеном
Технологии адаптивного регулирования позволяют полностью автоматизировать процесс настройки контуров регулирования широкого класса промышленных объектов управления с различными видами и величинами запаздывания. Они позволяют полностью отказаться от использования обычных методов идентификации динамики объекта и расчета оптимальных параметров настройки регуляторов.