Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
m4_pract1.doc
Скачиваний:
7
Добавлен:
18.09.2019
Размер:
1.95 Mб
Скачать

Властивості власних векторів та власних чисел.

1. У дійсному просторі власними числами будуть лише дійсні корені характеристичного рівняння а в комплексному просторі – усі корені рівняння .

2. Якщо всі власні числа матриці різні, то всі її власні вектори лінійно незалежні.

3. Кожному власному вектору відповідає одне власне число.

4. Якщо - власний вектор матриці з власним числом , то будь-який вектор , колінеарний вектору , також є власним вектором матриці з тим самим власним числом.

5. Якщо і - власні вектори матриці з одним і тим самим власним числом , то їх сума також є власним вектором матриці з тим самим власним числом.

6. Якщо квадратна матриця порядку має різні власні числа, то матриця , рядками якої є власні вектори має обернену матрицю

7. Якщо квадратна матриця порядку має різні власні числа , то матрицю можна звести до діагонального вигляду:

,

який називають канонічною формою Жордана матриці .

Лінійні оператори з простим спектром.

Серед лінійних операторів найпростіші є ті, які мають простий спектр.

Теорема 18. Якщо вектори базису є власними векторами лінійного оператора , то в базисі оператор задається діагональною матрицею. Навпаки, якщо в деякому базисі матриця оператора є діагональною, то всі вектори цього базису є власними векторами оператора .

Теорема 19. Для того, щоб в лінійному просторі лінійний оператор мав базис із власних векторів, необхідно і достатньо, щоб всі характеристичні числа оператора належали основному полю, і щоб кожному числу відповідало стільки лінійно незалежних власних векторів оператора , яка алгебраїчна кратність кореня характеристичного многочленна оператора .

Для того, щоб матриця була матрицею простої структури, тобто, щоб вона зводилась до діагонального вигляду, необхідно і достатньо, щоб всі характеристичні корені матриці належали основному полю і щоб для кожного кореня його геометрична кратність ( - ранг матриці ) співпадала з алгебраїчною кратністю , тобто з кратністю кореня характеристичного многочлена матриці .

Теорема 20. Якщо лінійний оператор має простий спектр, то існує базис простору , в якому цей оператор задається діагональною матрицею.

Геометричне тлумачення оператора з простим спектром.

Кожний вектор вибраного базису визначає одновимірний інваріантний підпростір , який природно розглядати як координатну вісь простору . Дію оператора на вектори осі можна характеризувати як «розтяг у разів» ( - власне значення, яке відповідає вектору ).

Довільний елемент є сума векторів , тобто розкладається по згаданих осях. Тому, для того, щоб дістати образ цього елемента, досить кожний складовий вектор розтягнути у разів: .

Зведення матриці до діагонального вигляду.

Теорема 21. Кожна квадратна матриця го порядку над полем , яка має у полі різних характеристичних коренів, подібна до деякої діагональної матриці, тобто зводиться до діагонального вигляду.

Методичні рекомендації до розв‘язування задач

Приклад 1. матриця оператора в базисі ; матриця оператора в базисі . Знайти матрицю оператора в базисі .

Розв’язання. Позначимо матрицю оператора : , тоді в базисі : , де - матриця оператора в базисі . За формулою , де - матриця переходу від базису до базису . Обчислимо .

,

, , .

, , .

Тоді

.

.

Обчислимо

.

Отже,

.

Відповідь: .

Приклад 2. Лінійний оператор в базисі , де , має матрицю . Лінійний оператор в базисі , де , має матрицю . Знайти в базисі , де , .

Розв’язання. Для того, щоб знайти матрицю в базисі , необхідно обчислити матриці лінійних операторів і в базисі .

Обчислимо матриці цих операторів в базисі за формулами , , де - матриця переходу від базису до . - матриця переходу від базису до .

, , . .

.

, , . .

Обчислимо і .

, .

Отже,

.

.

.

Відповідь: .

Приклад 3. Нехай і та – лінійні оператори простору . , . Знайти: а) , б) , в) .

Розв’язання. При розв’язуванні задачі скористаємося означенням суми та добутку лінійних операторів:

;

.

а) ,

,

Матриця цього перетворення має вигляд:

.

Другий спосіб. Знайдемо матриці перетворення лінійних операторів і .

, .

Виконаємо перетворення:

Відповідь: .

.

б)

.

;

.

Другий спосіб.

Розглянемо , де . Подіємо лінійними операторами та на вектори базису

, ,

, ,

; .

і .

Тоді

.

За означенням, матриця добутку лінійних операторів дорівнює добутку матриць лінійних операторів.

.

.

Відповідь: ;

.

в) .

Матриця цього перетворення має вигляд:

Другий спосіб.

.

.

Відповідь: ,

.

Приклад 4. Нехай і та – лінійні оператори простору . , .. Знайти в тому ж базисі.

Розв’язання. I. За означеннями дій над лінійними операторами, знаходимо:

,

.{оператор діє на вектор }.

.

Знайдемо матрицю, яка відповідає результату дій над даними лінійними операторами:

.

II. Знайдемо матриці операторів і :

, .

За правилами множення матриць, додавання матриць і множення матриці на число, обчислюємо:

.

Знайдемо координатний рядок образа вектора , якщо діє оператор .

.

.

Відповідь:

, .

Приклад 5. Нехай лінійний оператор векторного простору над полем дійсних чисел у деякому базисі цього простору задано матрицею: а) , б) ,

в) . Знайти ранг і дефект лінійного оператора . Побудувати ядро і область значень оператора .

Розв’язання.

а) Оскільки ранг лінійного оператора простору дорівнює рангу матриці цього оператора в базисі , то знаходимо спочатку :

~ IIp+5·IIIp ~ .

Звідси і тому .

Внаслідок того, що сума рангу і дефекту довільного лінійного оператора векторного простору дорівнює розмірності цього простору, то , .

Для побудови ядра і області значень оператора досить визначити їх базиси.

Оскільки область значень оператора складається з образів усіх векторів простору , тобто з усіх векторів виду , де , то підпростір породжується системою векторів , , . (а)

Отже, за базис підпростору можна взяти довільну максимальну лінійно незалежну підсистему векторів системи (а).

Оскільки

то такі підсистеми визначаються максимальними лінійно незалежними підсистемами рядків матриці . Із знаходження рангу матриці видно, що однією з максимальних лінійно незалежних підсистем рядків цієї матриці є підсистема, яка складається з першого та третього рядків матриці. Тоді за базис підпростору можна взяти вектори , .

Побудуємо ядро лінійного оператора . Оскільки вектор належить до ядра оператора тоді і тільки тоді, коли , тобто коли , де і - координатні рядки векторів і в базисі , то є множина всіх тих векторів простору , координатні рядки яких у базисі , розглядувані як числові вектори, утворюють простір розв’язків такої системи лінійних однорідних рівнянь , або в розгорнутому вигляді

(б)

Оскільки матриця останньої системи є матрицею, транспонованою до матриці , то, використовуючи процес знаходження рангу матриці , можна стверджувати, що ранг цієї системи дорівнює числу 2 і що за вільне невідоме можна взяти . Тоді , - загальний розв’язок системи (б), а = – фундаментальна система розв’язків системи (б), яка є базисом простору .

Зауваження. Надалі, розв’язуючи такі задачі, ми спрощуватимемо процес розв’язання, а саме:

1. Знайдемо ранг матриці . Це буде розмірність області значень заданого оператора . Тоді розмірність ядра оператора знайдемо з рівності , де розмірність усього простору.

2. Визначимо базис простору . Тут – номери тих рядків матриці , які складають максимальну лінійно незалежну систему рядків цієї матриці (зрозуміло, що числа визначаються неоднозначно).

3. Знайдемо фундаментальну систему розв’язків системи лінійних однорідних рівнянь, матрицею якої є матриця, транспонована до матриці . Базис простору і буде ( також, очевидно, визначається однозначно).

б) =?

, .

Отже,

, де .

базис складається із двох векторів.

Загальний розв’язок останньої системи: . Фундаментальна система розв’язків останньої системи складається із векторів .

Отже, базис складається із векторів і . .

в) , .

Отже, , де , , . базис складається з .

Приклад 6. Лінійний оператор в базисі має матрицю , а лінійний оператор в базисі має матрицю . Знайти матриці лінійних операторів та в базисі, в якому задано координати всіх векторів.

Розв’язання. Введемо позначення , для заданих базисів і для базису, в якому задано координати векторів. Завдання полягає в тому, щоб знайти матриці, що відповідають добуткам лінійних операторів та .

Матрицю лінійного оператора в базисі позначимо , а оператора - .

Тоді

і .

За формулою обчислення матриці лінійного оператора в іншому базисі:

і , де і - матриці переходу від базисів і до базису відповідно.

Оскільки матриці і , рядки яких складено відповідно з координатних рядків векторів і , є матрицями переходу від базису до базисів і відповідно, то, враховуючи зв'язок між матрицями переходу від одного базису до іншого, дістанемо рівності

, ;

, .

Тоді

і .

Обчислимо послідовно:

, .

.

.

Обчислюємо шукані матриці:

.

.

Відповідь: , .

Приклад 7. В лінійному просторі заданий базис . Лінійний оператор переводить вектори з координатами , відповідно у вектори з координатами , . Знайти матрицю оператора в базисі .

Розв’язання. Через позначимо оператор, який переводить вектори у вектори . Його матрицею у базисі буде

.

Оператор переводить вектори у вектори . Отже, добуток операторів і переводить вектори у вектори . Тому в базисі оператор має матрицю

.

Матриця оператора дорівнює добутку матриць операторів і , тобто якщо - матриця оператора в базисі , то . Тоді маємо:

Відповідь: - матриця оператора в базисі .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]