
- •1. Естественно-научная и гуманитарная культуры.
- •2. Структура вещества и химические системы.
- •3. «Здравый смысл» и научный метод.
- •4. Физические основы периодической системы химических элементов.
- •5. Сходство и различие методов объяснения и понимания в естествознании и гуманитарных науках.
- •6. Эволюция понятия химического элемента.
- •7. Естественнонаучные картины мира.
- •8. Особенности биологического уровня организации материи.
- •9. Особенности современной естественнонаучной картины мира.
- •10. Структурные уровни в организации живого вещества.
- •11. Классический (лапласовский) детерминизм.
- •12. Факторы и движущие силы эволюции живых организмов.
- •13. Пространство и время в классической механике.
- •14. Развитие представлений о биосфере.
- •15. Пространство и время в общей теории относительности.
- •16. Концепция в.И.Вернадского о живом веществе.
- •17. Представления о свойствах пространства и времени в специальной теории относительности.
- •18. Переход от биосферы к ноосфере.
- •19. Развитие представлений о строении атома.
- •20.Вещество, физическое поле и вакуум.
- •21. Биологическое и социальное в развитии человечества.
- •22. Кванты и элементарные частицы.
- •23. Дарвиновская теория эволюции.
- •24. Закон возрастания энтропии в закрытых системах.
- •25. Биоценозы и биогеоценозы.
- •26. Концепция неопределенности в квантовой механике (соотношение неточностей Гейзенберга).
- •27. Отличие синтетической теории эволюции от дарвиновской.
- •28. Концепция дополнительности Бора
- •29. Самоорганизация в неживой природе.
- •30. Вероятностно-статистической характер законов квантовой
- •31. Основные элементы биосферы.
- •32. Понятие поля в электромагнитной картине мира.
- •33. Молекулярная биология, ее роль в современной науке.
- •34. Универсальные и статистические законы естествознания.
- •35. Синергетика как концепция самоорганизации сложных систем.
- •36. «Большой взрыв» и этапы эволюции Вселенной.
- •37. Концепция системного метода.
- •38. Стандартная модель эволюции Вселенной.
- •39. Принцип всеобщего эволюционизма.
- •40. Принцип дуализма микрочастиц материи
- •41. Современная концепция экологии.
- •42. Роль катализа в эволюции химических систем.
- •43. Биологические предпосылки возникновения человечества.
- •44. Связь между электричеством и магнетизмом.
- •45. Концепция в.И.Вернадского о ноосфере.
- •46. Геологические процессы и строение Земли.
- •47. Специфика системного метода исследования.
- •48 . Телеология и ее основные проблемы.
26. Концепция неопределенности в квантовой механике (соотношение неточностей Гейзенберга).
Этот принцип впервые сформулировал известный немецкий физик В. Гейзенберг (1901—1976) в виде соотношения неточностей при определении сопряженных величин в квантовой механике. Теперь его обычно называют принципом неопределенности. Суть его заключается в следующем: если мы стремимся определить значение одной из сопряженных величин в квантово-механическом описании, например координаты х, то значение другой сопряженной величины, а именно импульса р = ту, нельзя определить с такой же точностью. Иначе говоря, чем точнее определяется одна из сопряженных величин, тем с меньшей точностью определяется другая величина.
Принцип неопределенности постулирует: Невозможно с одинаковой точностью определить и положение, и импульс микрочастицы. Произведение их неточностей не должно превышать постоянную Планка. На практике, конечно, неточности измерения бывают значительно больше, чем тот минимум, который предписывает принцип неопределенности, но речь идет о принципиальной стороне дела. Границы, которые устанавливаются принципом неопределенности, не могут быть преодолены путем совершенствования средств измерения. Поэтому принцип неопределенности, по крайней мере, в настоящее время считается фундаментальным положением квантовой механики и неявно фигурирует в ней во всех рассуждениях. Теоретически не исключается возможность отклонения этого принципа и соответственно изменения связанных с ним законов квантовой механики, но пока он считается общепризнанным. Из принципа неопределенности непосредственно следует, что вполне возможно осуществить эксперимент, с помощью которого можно с большой точностью определить положение микрочастицы, но в таком случае импульс ее будет определен менее точно. Наоборот, если импульс микрочастицы будет определен с возможной степенью точности, тогда ее положение будет определено недостаточно точно. В квантовой механике любое состояние системы описывается посредством так называемой волновой функции, но в отличие от классической механики эта функция определяет параметры ее будущего состояния не достоверно, а лишь с той или иной степенью вероятности. Это означает, что для того или иного параметра системы волновая функция может давать лишь вероятностные предсказания. Например, будущее положение какой-либо частицы системы будет определено лишь в некотором интервале значений, точнее говоря, для нее будет известно лишь вероятностное распределение значений. Таким образом, квантовая физика фундаментально отличается от классической физики тем, что ее предсказания имеют лишь вероятностный характер и потому она не обеспечивает точных предсказаний, к каким мы привыкли в классической механике. Именно эта неопределенность предсказаний больше всего вызывает споры среди ученых, некоторые из которых стали в связи с этим говорить об индетерминизме квантовой механики. Отметим, что представители прежней, классической физики были убеждены, что по мере развития науки и совершенствования измерительной техники законы науки станут все более точными и достоверными. Поэтому они верили, что никакого предела для точности предсказаний не существует. Принцип неопределенности, лежащий в основе квантовой механики, в корне подорвал эту веру. Если поведение микрообъектов можно рассматривать как с корпускулярной, так и волновой точки зрения, то каким образом можно описывать их поведение в целом? Очевидно, что ни корпускулярная, ни волновая картина в отдельности не дают адекватного их описания. В силу кажущейся противоречивости корпускулярных и волновых свойств Н. Бор в 1927 г. выдвинул принцип дополнительности для квантово-механического описания микрообъектов, согласно которому корпускулярная картина такого описания должна быть дополнена альтернативным волновым описанием. Действительно, в одних экспериментах микрообъекты, например электроны, ведут себя как типичные корпускулы, в других — как волновые структуры. Нельзя, конечно, думать, что волновые и корпускулярные свойства у них возникают вследствие определенных экспериментальных условий. На самом деле такие свойства при этих экспериментах только проявляются и обнаруживаются. Мы приходим, таким образом, к выводу, что дуализм микрообъектов, заключающийся в объединении в этом объекте одновременно волновых и корпускулярных свойств, представляет собой фундаментальную характеристику объектов микромира. Опираясь именно на эту характеристику, мы только и можем адекватно описать, понять и объяснить другие их особенности и микромира в целом. В настоящее время принцип дополнительности пытаются использовать не только в квантовой физике, но и во всех тех случаях, когда приходится описывать явления или процессы с противоречащими свойствами. Следует, однако, иметь в виду, что в квантовой физике необходимость использования этого принципа обусловлена дискретной природой ее объектов и квантовым характером величин, которые применяются при их описании.