
- •Физиология растений - наука о функциях растительных организмов.
- •5.1.2. Каротиноиды
- •5.1.3. Фикобилины
- •5.3.3. Фотосинтез по типу толстянковых (суккулентов)
- •Химизм реакций цикла Кальвина. Первичные продукты фотосинтеза, их превращения.
- •Фотодыхание. Первичный синтез углеводов, различные типы метаболизма.
- •Зависимость фотосинтеза от внешних факторов.
- •Суточные и сезонные ритмы фотосинтеза.
- •38. Ассимиляционное число. Фотосинтез и общая продукция растительных организмов.
- •39. Дыхание как процесс энзиматического поглощения кислорода.
- •6.2.1. Субстраты дыхания
- •6.2.2. Оксиредуктазы
- •6.2.3. Гликолитический путь
- •6.2.3.1. Гликолиз
- •Пути окисления органических веществ. Основные пути диссимиляции углеводов.
- •Цикл Кребса.
- •Окислительное фосфорилирование. Механизм сопряжения процесса транспорта электронов с образованием атф. Энергетическая эффективность процесса.
- •Значение процесса дыхания в жизнедеятельности растительного организма. Связь дыхания с другими функциями растений.
- •44. Соотношение энергетики фотосинтеза и дыхания в продукции растительного организма.
- •45. Значение воды в жизнедеятельности растений. Молекулярная структура и физиологические свойства воды.
- •46. Основные закономерности поглощения воды клеткой. Осмос - явление лежащее в основе поступления воды в растение.
- •47. Механизмы передвижения воды по растению. Корневое давление его механизм и значение в жизни растений. Натяжение воды в проводящих сосудах растений, сила молекулярного сцепления.
- •48. Выделение воды растением. Гуттация, транспирация; физиологические значения этих процессов.
- •4.3.4. Сера
- •4.3.5. Калий
- •4.3.6. Кальций
- •4.3.7. Магний
- •4.3.8. Кремний
- •4.3.9. Микроэлементы
- •Взаимосвязь процессов поглощения веществ с другими функциями растений (дыханием, фотосинтезом, водообменом, ростом, биосинтезом и др.).
- •Восходящее движение веществ по растению, пути и механизмы.
- •52. Источники азота для растений. Использование молекулярного азота. Круговорот азота в природе.
- •4.3.2.1. Доступные для растений формы азота
- •4.3.2.2. Биологическая азотфиксация
- •Почва, водная среда как источники минеральных элементов. Продуктивность среды.
- •Физиологические основы применения удобрений. Беспочвенные методы выращивания растений. Гидропоника.
- •Понятие о восходящем и нисходящем токах веществ в растении. Передвижение органических веществ. Транспорт веществ по сосудам флоэмы.
- •58. Определение понятий «рост» и «развитие» растений
- •10.1. Особенности роста клеток
- •59. Общие закономерности роста растений и их типы (апикальный, базальный, интеркалярный, радиальный).
- •60. Фазы роста: эмбриональная, растяжения, дифференцировки и их физиологические особенности. Дифференцировка клеток и тканей.
- •Явление покоя, его адаптивная функция, виды покоя. Физиология проростания покоящихся органов.
- •62. Механизмы регуляции ростовых процессов. Образование фитогормонов в растении, их физиологическое действие.
- •10.7.1. Ауксины
- •10.7.2. Цитокинины
- •10.7.3. Гиббереллины
- •10.7.4. Абсцизовая кислота
- •10.7.5. Этилен
- •10.7.6. Брассиностероиды
- •Ростовые движения растений. Тропизмы. Настии.
- •11.2.1. Тропизмы
- •11.2.2. Ростовые настии
- •Основные этапы онтогенеза раститений.
- •65. Засухоустойчивость растений. Нарушения физико-биохимических процессов в тканях растений в условиях водного дефицита.
- •66. Действие на растения температуры как фактора среды. Жаро- и холодоустойчивость растений. Изменения физиологических процессов в тканях растений в условиях температурной адаптации.
- •67.Физиолого-биохимические основы устойчивости высших растений к патогенным микроорганизмам. Пути повышения устойчивости растений к инфекционным заболеваниям.
Суточные и сезонные ритмы фотосинтеза.
38. Ассимиляционное число. Фотосинтез и общая продукция растительных организмов.
39. Дыхание как процесс энзиматического поглощения кислорода.
Дыхание – это окислительный распад органических веществ при участии кислорода с образованием воды, углекислого газа и макроэргических соединений, которые используются клетками.
6.2.1. Субстраты дыхания
Дыхательный коэффициент – это объемное или молярное отношение СО2, выделившегося в процессе дыхания, к поглощенному за это же время О2. При нормальном доступе кислорода величина коэффициента зависит от субстрата дыхания. Если используются углеводы, то коэффициент равен 1. Если разложению подвергаются более окисленные соединения, например, органические кислоты, то поглощение кислорода уменьшается и коэффициент становится больше 1. Так, при использовании яблочной кислоты он равен 1,33. При окислении более восстановленных соединений (жиры, белки) требуется больше кислорода и коэффициент становится меньше 1. Например, при использовании жиров коэффициент равен 0,7.
При недостатке углеводов используются другие субстраты. Особенно это проявляется при прорастании семян, в которых запасными питательными веществами являются белки и жиры. Белки предварительно расщепляются до аминокислот. Затем аминокислоты окисляются до ацетилкоэнзима А и кетокислот, которые участвуют в цикле Кребса. Жиры гидролизуются липазой до глицерина и жирных кислот. Глицерин фосфорилируется и затем окисляется до 3-фосфоглицеринового альдегида, который включается в обмен углеводов. Жирные кислоты окисляются с образованием ацетилкоэнзима А.
6.2.2. Оксиредуктазы
Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Они называются оксиредуктазами, так как окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого вещества (акцептора). Различают следующие группы ферментов.
Анаэробные или пиридиновые дегидрогеназы. Это двухкомпонентные ферменты, коферментом которых является НАД или НАДФ. Они передают электроны различным акцепторам, но не кислороду и отнимают два протона от субстрата. Один протон присоединяется к коферменту, а другой выделяется в среду. В зависимости от белковой части различают более 150 ферментов.
Аэробные или флавиновые дегидрогеназы. Они катализируют отнятие двух протонов от субстратов и передают электроны от анаэробных дегидрогеназ разным акцепторам (хиноны, цитохромы), в том числе и кислороду. Простетической группой служат производные витамина В2 – флавинадениндинуклеотид и флавинмононуклеотид.
Оксидазы. Эти ферменты передают электроны от субстрата только на кислород. При этом образуются вода (переносятся на О2 4 электрона), перекись водорода (Н2О2) или супероксидный анион кислорода (О-2). Н2О2 и О-2 весьма токсичны и поэтому быстро превращаются в воду и кислород под действием каталазы и супероксиддисмутазы, соответственно.
Оксигеназы. Они активируют кислород и катализируют его присоединение к различным органическим соединениям (аминокислоты, фенолы, ненасыщенные жирные кислоты, ксенобиотики – чужеродные токсичные вещества).