
- •1.Узагальнена структурна схема восп, призначення елементів цієї схеми. Параметри восп.
- •2. Класифікація восп. Покоління восп та структурні схеми восп різних поколінь.
- •3. Пасивні елементи восп, їх призначення. Параметри пасивних елементів восп.
- •5. З’єднання волоконних світоловодів, вимоги до з’єднувачів. Втрати у з’єднувачах, заходи зменшення цих втрат.
- •6. Оптичні розгалужувачі, їх призначення, параметри, конструкції.
- •7. Селективні розподільники оптичної потужності, їх призначення, параметри, конструкції.
- •8. Оптичні ізолятори, циркулятори, атенюатори, перемикачі, компенсатори дисперсії. Їх призначення, параметри, приклади конструкцій.
- •9. Джерела оптичного випромінювання, їх призначення, вимоги до них, параметри та характеристики.
- •10,11. Джерела когерентного,некогерентного випромінювання, їх особливості, принцип дії, параметри та характеристики.
- •12. Одночастотні випромінювачі, їх особливості, принцип дії, параметри. Призначення цих випромінювачів.
- •13. Детектори оптичного випромінювання. Їх призначення, принцип дії, параметри та характеристики.
- •14. Модуляція оптичного випромінювання, методи модуляції, вимоги до модуляторів.
- •15. Оптичні передавальні пристрої, їх призначення, структурні схеми цих пристроїв.
- •16. Стабілізація оптичної потужності в оптичних передавальних пристроях. Температурна стабілізація оптичної потужності.
- •17. Світловодні коди, їх особливості та вимоги до них.
- •18. Побудова основних світловодних кодів та їх порівняння.
- •19. Цифрові оптичні передавальні пристрої, вибір робочої точки. Чинникі, які спотворюють форму оптичних імпульсів в цифрових оптичних передавальних пристроях.
- •20. Оптичні приймальні пристрої, їх призначення. Методи прийому оптичного випромінювання.
- •21. Шуми та чутливість оптичних приймальних пристроїв. Еквівалентна шумова схема вхідних каскадів оптичних приймальних пристроїв та її аналіз.
- •22. Джерела шумів та випадкових спотворень імпульсів, що призводять до появи помилки при прийманні оптичних сигналів.
- •23. Модель волоконно-оптичного каналу, розрахунок довжини регенераційної дільниці.
- •24. Система передачі ікм-120-4/5, її особливості. Параметри та призначення.
- •25. Структурна схема комплекту оптичного лінійного тракту клт-25, пояснити роботу цієї схеми.
- •26. Система передачі отг-35, її особливості, призначення, параметри, структурна схема.
- •27. Оптичні підсилювачі на домішковому волокні edfa, їх особливості, схеми накачування.
- •29. Методи підвищення пропускної здатності волоконно-оптичних ліній та їх особливості.
- •30. Оптичне мультиплексування, його різновиди, застосування.
- •31. Щільне та зверхщільне оптичне мультиплексування. Канальні частотні плани, порівняння та застосування цих видів мультиплексування.
- •32. Грубе та гібридне оптичне мультиплексування, їх канальні плани, застосування цих різновидів мультиплексування.
- •33. Повністю оптичні мережі, їх особливості, етапи розвитку, елементна база повністю оптичних мереж.
- •34. Структурні схеми різних етапів розвитку повністю оптичних мереж.
- •35. Модель взаємодії технологій в повністю оптичній мережі. Трирівнева модель повністю оптичної мережі.
- •36. Нелінійні ефекти у повністю оптичних мережах.
- •37. Пасивні оптичні мережі, їх застосування, стандарти, топології цих мереж.
- •38. Архітектура та принцип дії пасивних оптичних мереж.
- •41. Структурна схема та принцип дії оптичного рефлектометра.
- •42. Призначення оптичного рефлектометра. Визначення місця розташування та характеру неоднорідностей оптичного кабелю, вимірювання загасання оптичного кабелю.
- •43. Оптичні тестери, їх призначення, комплектація, параметри.
- •44.Ідентифікація пошкоджень волоконно-оптичних ліній та методи їх усунення.
37. Пасивні оптичні мережі, їх застосування, стандарти, топології цих мереж.
Основная идея архитектуры PON – использование всего одного приемопередающего модуля в OLT для передачи информации множеству абонентских устройств ONT и приема информации от них. Число абонентских узлов, подключенных к одному приемопередающему модулю OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приемопередающей аппаратуры. Для передачи потока информации от OLT к ONT – прямого (нисходящего) потока, как правило, используется длина волны 1550 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (восходящий) поток, передаются на длине волны 1310 нм. В OLT и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки. Реализация этого принципа показана на рисунке.
Прямой поток Прямой поток на уровне оптических сигналов, является широковещательным. Каждый абонентский узел ONT, читая адресные поля, выделяет из этого общего потока предназначенную только ему часть информации. Фактически, мы имеем дело с распределенным демультиплексором.
Обратный поток Все абонентские узлы ONT ведут передачу в обратном потоке на одной и той же длине волны, используя концепцию множественного доступа с временным разделением TDMA (time division multiple access). Для того, чтобы исключить возможность пересечения сигналов от разных ONT, для каждого из них устанавливается свое индивидуальное расписание по передаче данных c учетом поправки на задержку, связанную с удалением данного ONT от OLT. Эту задачу решает протокол TDMA MAC."Кольцо"
Кольцевая топология на основе SDH положительно зарекомендовала себя в городских телекоммуникационных сетях. Однако в сетях доступа не все обстоит также хорошо. Если при построении городской магистрали расположение узлов планируется на этапе проектирования, то в сетях доступа нельзя заранее знать где, когда и сколько абонентских узлов будет установлено.
"Точка-точка" (P2P)
Топология P2P не накладывает ограничения на используемую сетевую технологию. P2P может быть реализована как для любого сетевого стандарта, так и для нестандартных (proprietary ) решений, например, использующих оптические модемы. С точки зрения безопасности и защиты передаваемой информации, при соединении P2P обеспечивается максимальная защищенность абонентских узлов. Поскольку ОК нужно прокладывать индивидуально до абонента, этот подход является наиболее дорогим и привлекателен в основном для крупных абонентов.
"Дерево с активными узлами"
Дерево с активными узлами – это экономичное с точки зрения использования волокна решение. Это решение хорошо вписывается в рамки стандарта Ethernet с иерархией по скоростям от центрального узла к абонентам 1000/100/10 Мбит/с (1000Base-LX, 100Base-FX, 10Base-FL). Однако в каждом узле дерева обязательно должно находиться активное устройство (применительно к IP-сетям, коммутатор или маршрутизатор). Оптические сети доступа Ethernet, преимущественно использующие данную топологию, относительно недороги. К основному недостатку следует отнести наличие на промежуточных узлах активных устройств, требующих индивидуального питания.
"Дерево с пассивным оптическим разветвлением PON (P2MP)"
Решения на основе архитектуры PON используют логическую топологии "точка-многоточка" P2MP (point-to-multipoint) , которая положена в основу технологии PON, к одному порту центрального узла можно подключать целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом в промежуточных узлах дерева устанавливаются компактные, полностью пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания.