- •Алгебра событий. Классическое определение вероятности.
- •Условная вероятность.
- •Обоснование формулы условной вероятности в общем случае.
- •Основные понятия теории вероятностей
- •Независимые события.
- •Испытание
- •Основы комбинаторики.
- •Моменты распределения.
- •Вычисление вероятностей
- •Основы теории вероятности
- •Теорема умножения вероятностей.
- •Теорема сложения вероятностей совместных событий
- •Вероятность появления хотя бы одного события
- •Формула полной вероятности
- •Формула полной вероятности.
- •Формула сложения вероятностей.
- •Формула Бейса
- •Формула Байеса.
- •Формула Бернули
- •Локальная теорема Лапласа.
- •Интегральная теорема Лапласа.
- •Случайные величины и законы их распределения
- •Функция распределения случайной величины.
- •Плотность распределения вероятности непрерывной случайной величины.
- •Характеристики положения случайной величины.
- •Математическое ожидание случайной величины.
- •Дисперсия случайной величины.
- •Для дискретной случайной величины
- •Свойства математического ожидания
- •Характеристики рассеяния.
- •Некоторые законы распределения случайных величин.
- •Распределение Пуассона
- •Закон равномерной плотности
- •Показательное (экспоненциальное распределение)
- •Нормальный закон распределения (закон Гаусса)
- •Геометрический способ
- •Случайные величины.
- •Испытания по схеме Бернулли.
- •Метод Монте-Карло.
- •Теоремы сложения.
- •Операции над событиями.
- •Частость наступления события.
- •Свойства частости.
- •Аксиоматика теории вероятности. Построение вероятностного пространства.
- •Теорема о продолжении меры.
- •Определение вероятностного пространства.
- •Классическое определение вероятности.
- •Независимые события.
- •Формула сложения вероятностей.
Дисперсия случайной величины.
Дисперсией D(x) случайной величины х называют число, которое определяется по формуле
D(x)=E(x–E(x))
(11.1)
Поэтому
дисперсия D(x)
случайной величины х,
которая может принимать значения
с вероятностями Р
,…Р
определяется,
как число i=k
i=k j=k
D(x)=∑(x
–E(x))
∙P
=∑(x
–
)
∙P
(11.2)
i=1 i=1 j=1
Например, в случае с игральной костью для дисперсии D(x) получаем следующее число
D(x)=
=(1/6)∙((1-7/2)
+(2-7/2)
+(3-7/2)
+(4-7/2)
+(5-7/2)
+(6-7/2)
)=(1/6)∙(25/4+9/4+1/4+1/4+9/4+25/4)=(1/6)∙(35/2)=35/12 (11.3)
Пусть
некоторая случайная величина х*
является
суммой (10.4) случайных величин
.
Пусть эти случайные величины независимы.
Это означает, что вероятность, с которой
может осуществиться то или иное значение
случайной величины
не зависит от того, какое значение
принимают другие случайные величины
.
Тогда доказывается, что дисперсия
случайной величины х*
является суммой дисперсии случайных
величин
Важно заметить, что если случайные величины не являются независимыми, то дисперсия их суммы не обязательно равна сумме их дисперсий.
Математическим ожиданием случайной величины х (M[x])называется средне взвешенно значение случайной величины причем в качестве весов выступают вероятности появления тех или иных значений.
Для дискретной случайной величины
Для непрерывной
С механической точки зрения мат. Ожидание это абсцисса центра тяжести системы точек расположенных по одноименной оси. Размерность мат. Ожидания совпадает с размерностью самой случайной величины.
Математическое ожидание случайной величины всегда больше наименьшего значения и меньше наибольшего.
Математическим ожиданием случайной величины X называется число вида
xi - все возможные различные конкретные исходы испытания;
pi - вероятности их наступления.
Математическое ожидание является как бы аналогом центра масс точечной механической системы:
Как центр масс:
Смысл характеристики мат.ожидания заключается в следующем: это точка на числовой оси, относительно которой группируются результаты конкретных испытаний над дискретной случайной величиной.
Свойства математического ожидания
1. MC=C
2. MCX=CMX
Построим таблицу для случайной величины CX:
по определению математического ожидания:
3. M(X+a)=MX+a, a=const
Построим таблицу для случайной величины x+a
Доказать следствие
4. M(aX+b)=aMX+b, где a, b - константы
Пусть случайная величина Y является функцией f(x) от случайной величины X. Построим вероятностное пространство случайной величины Y.
Верхняя строчка является пространством элементарных событий для случайной величины Y. В противном случае верхняя строчка является пространством элементарных событий для величины Y.
Все одинаковые числа в верхней строчке заменяется одним, вероятность наступления которого равна сумме соответствующих вероятностей.
Следствие.
Математическое ожидание случайной величины Y равняется:
Начальным моментом К-го порядка случайной величины X называется математическое ожидание случайной величины Xk.
Центрированная случайная величина - это величина, равная X’=X-MX
Покажем, что математическое ожидание MX’ равно 0.
Центральным моментом К-го порядка называется начальный момент К-го порядка случайной величины X’
при решении реальных задач практические вероятности рi неизвестны, но считая, что вероятность - это частость, при большом числе испытаний
Дисперсией случайной величины X, называется центральный момент второго порядка случайной величины X.
Дисперсия является мерой концентрации результатов конкретных испытаний над случайной величиной X.
Свойства.
1. Чем меньше дисперсия, тем более тесно группируются результаты конкретных испытаний относительно математического ожидания.
Пусть дисперсия мала, тогда мало каждое слагаемое суммы (xi-)2pi. Тогда для , xi которое по модулю резко отличается от математического ожидания , pi - мало. Следовательно, большую вероятность наступления могут иметь лишь те xi, которые по модулю мало отличаются от математического ожидания.
