
- •Алгебра событий. Классическое определение вероятности.
- •Условная вероятность.
- •Обоснование формулы условной вероятности в общем случае.
- •Основные понятия теории вероятностей
- •Независимые события.
- •Испытание
- •Основы комбинаторики.
- •Моменты распределения.
- •Вычисление вероятностей
- •Основы теории вероятности
- •Теорема умножения вероятностей.
- •Теорема сложения вероятностей совместных событий
- •Вероятность появления хотя бы одного события
- •Формула полной вероятности
- •Формула полной вероятности.
- •Формула сложения вероятностей.
- •Формула Бейса
- •Формула Байеса.
- •Формула Бернули
- •Локальная теорема Лапласа.
- •Интегральная теорема Лапласа.
- •Случайные величины и законы их распределения
- •Функция распределения случайной величины.
- •Плотность распределения вероятности непрерывной случайной величины.
- •Характеристики положения случайной величины.
- •Математическое ожидание случайной величины.
- •Дисперсия случайной величины.
- •Для дискретной случайной величины
- •Свойства математического ожидания
- •Характеристики рассеяния.
- •Некоторые законы распределения случайных величин.
- •Распределение Пуассона
- •Закон равномерной плотности
- •Показательное (экспоненциальное распределение)
- •Нормальный закон распределения (закон Гаусса)
- •Геометрический способ
- •Случайные величины.
- •Испытания по схеме Бернулли.
- •Метод Монте-Карло.
- •Теоремы сложения.
- •Операции над событиями.
- •Частость наступления события.
- •Свойства частости.
- •Аксиоматика теории вероятности. Построение вероятностного пространства.
- •Теорема о продолжении меры.
- •Определение вероятностного пространства.
- •Классическое определение вероятности.
- •Независимые события.
- •Формула сложения вероятностей.
Вычисление вероятностей
классический способ 2. геометрический
статистический
Первые два способа называются способами непосредственного подсчета вероятности, а классический основан на подсчете числа опытов благоприятствующих данному событию среди всех его возможных исходах.
Основы теории вероятности
Суммой событий Аi называется событие С состоящее в появлении события А или события В или их обоих вместе.
Суммой события А и В называется событие С заключенное в выполнении хотя бы одного из названых событий.
Произведением нескольких событий называется событие заключающееся в совместном выполнении всех этих событий.
Теорема умножения вероятностей.
Событие А называется зависимым от события В если его вероятность меняется в зависимости от того произошло событие В или нет.
Для независимых событий условная и безусловная вероятность совпадают.
Вероятность появления двух зависимых событий равна произведению вероятностей одного из них на вероятность другого вычисленную при условии, что первое событие имело место.
Р(А*В)=Р(А)*Р(В/А)=Р(В)*Р(В/А)
Вероятность произведения нескольких событий равна произведению вероятностей этих событий причем вероятность каждого следующего события вычисляется при условии, что все предыдущие имели место.
Р(А1;А2…Аn)=Р(А1)*Р(А2/А1)*…
*Р(Аn/А1,А2…Аn-1)
Теорема сложения вероятностей совместных событий
Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления.
Р(А)+Р(В)=Р(А)+Р(В)-Р(А*В)
Вероятность появления хотя бы одного события
Вероятность появления события А заключающееся в наступлении хотя бы одного из независимых совокупностей событий .А1,А2…Аn равна разности между единицей и произведением вероятности противоположных событий А1,А2…Аn
Р(А)=1-q1*q2*…*qn
Формула полной вероятности
Пусть событие А может появиться вместе с одним из образующих полную группу попарнонесовместных событий Н1,Н2…Нn называемых гипотезами, тогда вероятность события А вычисляется как сумма произведений вероятностей каждой гипотезы на вероятность события А при этой гипотезе
Рассмотрим систему A из k попарно несовместных событий.
B1,
B2,
..., Bk
Пусть дано событие A, удовлетворяющее равенству A=B1A+B2A+...+BkA.
Показать, что события B1A, B2A, BkA попарно несовместны. BiABjA=BiBjAA=VAA=V
Найти вероятность наступления события A. Любое событие входящее в A, обязательно входит в некоторое, но одно Bi, т.к. B1, B2, ..., Bk образуют полную группу.
Т.к. B1, B2, ..., Bk несовместны, то по третей аксиоме теории вероятности имеем:
;
т.е.
Например: Имеются урны трех составов
-
1
5 урн
6 белых и 3 черных шара
2
3 урны
10 белых и 1 черный
3
7 урн
0 белых и 10 черных
Все шары в каждой урне перемешаны.
Испытание - извлекается шар. Какая вероятность того, что при этом будет извлечен белый шар.
B1 - Вытащить любой шар из урны 1.
B2 - Вытащить любой шар из урны 2.
B3 - Вытащить любой шар из урны 3.
A - Извлечь белый шар.
A=B1A+B2A+B3A
B1, B2, B3 - попарно несовместны.
Формула полной вероятности: P(A)=P(B1)P(A/B1)+P(B2)P(A/B2)+P(B3)P(A/B3)
P(B1)=1/3 |
P(A/B1)=6/9=2/3 |
P(B2)=1/5 |
P(A/B2)=10/11 |
P(B3)=7/15 |
P(A/B3)=0 |
P(A)=1/32/3+1/511/10+7/150=2/9+2/11=40/990.4