
- •Харьковская областная государственная администрация
- •Украинский научно-исследовательский институт экологических проблем
- •Харьковская национальная академия городского хозяйства
- •Кп кх «Харьковкоммуночиствод»
- •В.Н. Бабаев, н.П. Горох, и.В. Коринько
- •Концепция экологизации и энергоресурсосбережения в системе управления отходами мегаполиса Бабаев в.Н., Горох н.П., Коринько и.В.
- •Актуальность проблемы и анализ ситуации.
- •Концепция управления муниципальными отходами.
- •Укрупненная эколого-экономическая оценка промышленных технологий переработки тбо.
- •Экологическая оценка технологий переработки тбо.
- •5. Общие выводы.
- •Литература
- •Проблема муниципальных отходов и рациональные пути ее решения Бабаев в.Н., Горох н.П., Коринько и.В., Кузин а.К., Шубов л.Я.
- •Актуальность проблемы и анализ ситуации.
- •Принципы оптимизации системы санитарной очистки украинских городов.
- •3. Оптимизация сортировки тбо как технологической операции в схемах их сбора и транспортировки.
- •Оптимизация режима сортировки.
- •Термическая переработка в технологиях комплексного управления тбо.
- •Общие выводы.
- •Бабаев в.Н., Горох н.П., Коринько и.В., Кись в.Н.
- •Актуальность проблемы и анализ ситуации.
- •Технология переработки композитных смесевых полимерных отходов.
- •3.Технологическая схема производства по переработке пленочных отходов состоит из следующих стадий:
- •Выводы.
- •Литература
- •Методы аэросепарации легковесных фракций муниципальных отходов Бабаев в.Н., Горох н.П., Коринько и.В., Кись в.Н., Шубов л.Я.
- •1. Актуальность проблемы и анализ ситуации.
- •2. Технологические расчеты принципиальных схем аппаратурного оформления методов аэросепарации.
- •2.1 Основные факторы технологических показателей аэросепарации
- •3. Специальные методы сепарации.
- •4. Общие выводы.
- •Литература
- •2. Тенденция перехода к комплексной промышленной переработке муниципальных отходов.
- •3. Критерии выбора безотходных технологий и экологически безопасных методов переработки отходов.
- •4. Динамика образования тары и упаковки из полимеров в составе тбо.
- •5. Верификация экономической эффективности комплексной переработки отходов.
- •6. Экологические факторы обоснования выбора технологии переработки тбо.
- •7. Оценка потенциально опасных ингредиентов, влияющих на газовые выбросы при термической переработке тбо.
- •Малоотходной переработки тбо
- •Малоотходной переработки тбо (комбинация процессов сортировки, слоевого сжигания и ферментативной сушки)
- •8. Выводы.
- •Литература
- •Технологические основы методов подготовки и
- •Переработки в системе управления
- •Муниципальными отходами
- •Горох н.П.
- •Актуальность проблемы.
- •Оптимальная схема построения технологии сепарации тбо.
- •Основные методы подготовки и переработки в технологической схеме сепарации тбо.
- •3.1 Измельчение отходов.
- •Грохочение.
- •Магнитные способы сепарации.
- •Аэросепарация.
- •Литература
- •База данных об изношенной таре и упаковке
- •Эколого-экономические аспекты и механические свойства в процессах переработки полимерных отходов н.П. Горох
- •Эколого-экономическая эффективность применения полимерных отходов.
- •2. Структурно-химические особенности вторичных полимеров.
- •3. Реология и механические свойства в процессах переработки полимеров.
- •Выводы.
- •Литература
- •Технологические процессы регенерации
- •Полимерных отходов
- •Горох н.П.
- •Актуальность проблемы.
- •Для регистрации потребляемой мощности аппарат снабжен киловаттметром типа д305, а для контроля температуры установлен потенциометр ксп2-005.
- •2.2 Исследование процесса регенерации полиэтилена из пленочных отходов на роторном агломераторе
- •Литература
- •При комплексной утилизации муниципальных отходов Горох н.П.
- •Актуальность.
- •Анализ публикаций.
- •Цель и постановка задачи.
- •Технологичность проектируемых конструкций из полимерных композитов.
- •Перспективы использования вторичных полимерных композиционных материалов.
- •Литература
- •Твердые бытовые отходы: объективная реальность, проблемы накопления и переработки Горох н.П., Коринько и.В., Кись в.Н., Швец л.Н., Ярошенко ю.В.
- •1. Актуальность проблемы и анализ ситуации.
- •2. Административно-правовое регулирование обращения с отходами.
- •3. Принципы оптимизации санитарной очистки.
- •4. Общие выводы.
- •Коринько и.В., Горох н.П., Кись в.Н., Ярошенко ю.В., Юрченко в.А.
- •Горох н.П., Коринько и.В., Швец л.Н., Ткачёв в.А.,
- •Литература
- •Перспективы использования вторичных полимерных материалов из бытовых отходов потребления
- •Коринько и.В., Горох н.П., Пилиграмм с.С.
- •Эколого-экономическая эффективность применения полимерных отходов
- •Структурно-химические особенности вторичных полимеров
- •Реология и механические свойства в процессах переработки полимеров.
- •Выводы.
- •Литература
- •Экологически безопасная переработка отходов органического происхождения методом пиролиза Костенко в.Ф., Тимошенко в.В., Горох н.П.
- •Литература
- •Киотский протокол и проблема газообразных промышленных выбросов в Украине Внукова н.В., Фалько а.И., Шостак ю.Д., Горох н.П.
- •Защита бетона трубопроводов водоотведения полимерными материалами Юрченко в.А., Горох н.П., Кухарская а.В.
- •Введение
- •Анализ публикаций
- •Цель и постановка задачи
- •Испытание защитных покрытий бетона в натурных условиях
- •Литература
- •Перспективы промышленной переработки полимерных отходов как ресурсный сырьевой потенциал энергосберегающих технологий региона Горох н.П., Ляхевич и.Н., Сулима в.В., Пилиграмм с.С.
- •Литература
Магнитные способы сепарации.
Магнитные способы обогащения основаны на разделении материалов по магнитным свойствам. Их применяют в том случае, если отходы содержат металлические включения в составе ТБО.
Магнитная сепарация – процесс разделения твердых материалов в магнитном поле, основанный на использовании различий в их магнитных свойствах (главным образом, в магнитной восприимчивости).
Магнитную сепарацию широко применяют при обогащении отходов производства и потребления, при обогащении руд (железных, марганцевых, титановых, медно-никелевых, вольфрамовых, редкометалльных), для удаления железистых примесей из кварцевых песков, для регенерации ферромагнитных утяжелителей в установках для разделения материалов в тяжелых суспензиях.
Магнитному обогащению подвергается обычно материал крупностью – 200+0,1 мм. Для магнитного обогащения важное значение имеет способность разделяемых компонентов к намагничиванию, которая характеризуется магнитной восприимчивостью.
По магнитным свойствам (по способности намагничиваться во внешнем магнитном поле) все вещества делятся на диамагнитные, парамагнитные и ферромагнитные. Принадлежность вещества к той или иной группе определяют процессы в атомах, молекулах и кристаллах.
Диамагнитные вещества (висмут, серебро, золото) обладают отрицательной магнитной восприимчивостью (под действием магнитных сил электроны атомов приобретают добавочную угловую скорость, вследствие чего в каждом атоме возникает добавочный магнитный момент, направленный против создающего его внешнего поля).
Парамагнитные вещества (хром, марганец, олово, платина, редкоземель-ные элементы) обладают положительной магнитной восприимчивостью (под действием магнитных сил атомные магнитные моменты ориентируются по направлению поля, вследствие чего парамагнитные вещества во внешнем магнитном поле намагничиваются в направлении поля).
У диа- и парамагнитных веществ магнитная восприимчивость очень мала и почти не зависит от напряженности поля.
Ферромагнитные вещества (железо, никель, кобальт, кадмий) характери-зуются способностью к самопроизвольному намагничиванию даже при отсутствии внешнего магнитного поля. При увеличении напряженности внешнего магнитного поля намагниченность ферромагнитного вещества возрастает при данной температуре до полного насыщения (все атомные магнитные моменты становятся параллельными и ориентируются по полю).
При намагничивании ферромагнитного компонента ему сообщается энергия на создание магнитного поля внутри компонента и вне его. Магнитная сила, действующая на ферромагнитный компонент в магнитном поле, определяется потенциальной энергией, приобретенной единицей объема компонента во время его намагничивания:
,
где
–
магнитная восприимчивость (
);
–
напряженность
магнитного поля (А/м).
Чтобы магнитные компоненты притягивались к магниту, действующая на них магнитная сила притяжения должна превосходить силу тяжести, а также сопротивление среды движению частиц и другие механические силы.
Чем больше разница магнитной восприимчивости отдельных компонентов в их смеси, тем легче разделяются они в магнитном поле, причем, чем выше магнитная восприимчивость, тем меньшая требуется напряженность поля для разделения компонентов.
Работа намагничивания единицы объема ферромагнитного компонента при изменении индукции В от 0 до некоторого значения В1 графически выражается площадью между кривой намагничивания и осью ординат (рис. 3.5).
Рисунок 3.5 – Вычисление работы намагничивания ферромагнитного
вещества
Ферромагнитные компоненты большинства твердых отходов (в т.ч. ТБО) имеют удельную магнитную восприимчивость не менее 3·10-3 см3/г и достаточно эффективно извлекаются в магнитный продукт при использовании сепараторов с относительно слабым магнитным полем напряженностью до 120 кА/м (практически применяются сепараторы с магнитным полем 90-200 кА/м). К ним относятся все изделия из черного металла, отслужившие свой срок в быту и попавшие в ТБО, а также луженая консервная тара и др.
Для выделения из отходов магнитного продукта наиболее подходят подвесные электромагнитные сепараторы-железоотделители типа ПС с автоматической разгрузкой и шкивные сепараторы типа ШЭ Луганского машиностроительного завода им. Пархоменко. В рабочей зоне этих сепараторов имеется магнитное поле, которое создается системой из электромагнитов с обмоткой, питаемой постоянным током.
Рисунок 3.6 – Схема сил, действующих на ферромагнитное тело в магнитном поле подвесного сепаратора
На рис. 3.6 показана схема сил, действующих на ферромагнитный компонент, транспортируемый наклонным конвейером и попадающий в поле действия магнитной системы подвесного сепаратора, установленного на расстоянии h от ленты. После того, как ферромагнитный компонент смещается к транспортирующей ленте сепаратора, удаляющей его из рабочей зоны сепарации, магнитной силе необходимо преодолевать силу тяжести G или ее нормальную составляющую G·cos x.
Минимальная удельная магнитная сила fм, необходимая для извлечения ферромагнитных компонентов при монослойной подаче отходов в зону сепарации подвесного электромагнитного сепаратора может быть рассчитана по формуле:
,
Н
где h – высота зоны сепарации, м;
v – скорость конвейерной ленты, м/с;
lакт. – длина активной части зоны сепарации, м;
g – ускорение свободного падения, м/с2.
Для обеспечения полноты извлечения цветных металлов электродинами-ческая сепарация должна проводиться в несколько стадий (основная и контрольные операции), причем сепараторы должны устанавливаться на различных конвейерах, ленты которых имеют разную скорость (например, в основной операции 0,8-1,0 м/с, в контрольной соответственно 1,0-1,2 м/с. При перегрузке слой потока будет уточняться, а компоненты цветных металлов займут иное более благоприятное положение на ленте другого конвейера, что увеличивает вероятность их доизвлечения в контрольной операции.
Практика показывает, что при извлечении черных металлов, особенно в начале процесса сепарации ТБО, вместе с ними в магнитный продукт попадают посторонние примеси (макулатура, текстиль, полимерная пленка и др.), поэтому в технологической схеме обязательно должна предусматриваться перечистка магнитного продукта в магнитном поле для освобождения от неметаллических включений.