
- •Технические характеристики и конструкции современных синхронных генераторов.
- •2. Системы охлаждения синхронных генераторов.
- •3. Параметры и типы систем возбуждения синхронных генераторов.
- •4. Электромашинная система возбуждения генераторов и ее характеристики.
- •Тиристорные системы независимого и зависимого возбуждения.
- •Автоматическое гашение магнитного поля генераторов.
- •6. Включение генераторов на параллельную работу.
- •7. Синхронные компенсаторы и схемы их включения в сеть.
- •Типы силовых трансформаторов и их параметры.
- •Схемы, группы соединения обмоток и способы заземления нейтралей трансформаторов разных уровней напряжений.
- •11. Элементы конструкции силовых трансформаторов.
- •Системы охлаждения силовых трансформаторов.
- •Нагрузочная способность силовых трансформаторов.
- •14. Особенности конструкции и режимов работы автотрансформаторов.
- •Регулирование напряжения трансформаторов
- •16. Особенности регулирования напряжения ат.
- •17. Виды схем электрических соединений электростанций и требования к главным схемам соединений.
- •Структурные схемы выдачи мощности тэц.
- •Схемы ру с одной системой сборных шин. Достоинства, недостатки, область применения.
- •21. Упрощенные схемы ру 35-220 кВ.
- •22. Схема ру с одной рабочей и обходной системами шин.
- •23. Кольцевые схемы ру (треугольник, четырехугольник, расширенный четырехугольник).
- •24. Схема ру с 3/2 выключателя на цепь.
- •25. Технико-экономическое обоснование выбора структурной схемы выдачи мощности тэц.
- •34.Выбор мощности трансформаторов в структурных схемах кэс и аэс.
- •35.Потребители энергии в системе собственных нужд станций. Величины расхода энергии на сн станций разных типов. Номинальные напряжения сетей электроснабжения собственных нужд.
- •36.Самозапуск электродвигателей механизмов собственных нужд тэц.
- •42.Конструкция ору-330 кВ выполненного по схеме 3/2 выключателя на цепь.
- •43.Конструктивное исполнение ру-110 кВ с одной секционированной и обходной системой шин.
- •45.Комплектные ру. Принципы конструктивного исполнения.
- •46.Конструктивное исполнение крун, круэ.
- •47.Комплектные трансформаторные подстанции.
- •48. Компоновка тэц. Конструкции токоведущих частей тэц.
- •49. Принципы управления электростанциями.
- •50. Виды схем вторичных устройств.
- •51 .Монтажные схемы вторичных устройств.
- •52.Исполнение цепей напряжения вторичных устройств.
- •53.Установки постоянного оперативного тока на эс. Аккумуляторные батареи эс.
- •54.Принципы построения схемы генерирования и распределения постоянного оперативного тока на тэц.
- •55.Переменный и выпрямленный оперток.
- •56. Требования к схемам дистанционного управления выключателями.
- •57. Принципы построения схем дистанционного управления высоковольтными выключателями с электромагнитными приводами.
- •58.Особенности схем ду воздушными выключателями с пофазным управлением.
- •59. Принципы построения схем аварийной сигнализации.
- •60.Принципы построения схем предупредительной сигнализации.
- •61. Воздушные автоматические выключатели. Конструкции выключателей с электромагнитными и тепловыми расцепителями (серии а 3200).
- •62. Воздушные автоматические выключатели с полупроводниковыми расцепителями.
- •63. Контакторы и магнитные пускатели. Схема управления магнитным пускателем.
- •65. 3Ру. Достоинства, недостатки, область применения. Принципы конструктивного исполнения.
- •66. Выбор числа и мощности трансформаторов на подстанции.
- •67. Схема с двумя системами сборных шин
- •64. Контакторы и магнитные пускатели. Схема с реверсивным пускателем.
- •66. Уровни ткз в современных системах и способы их ограничения.
Типы силовых трансформаторов и их параметры.
Силовые трансформаторы, установленные на электростанциях и подстанциях, предназначены для преобразования электроэнергии с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12-15% ниже, а расход активных материалов и стоимость на 20-25% меньше, чем в группе трех однофазных трансформаторов такой же суммарной мощности. Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка.
По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные (рис. 2-28, а, б). Трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору, а так же уменьшение токов КЗ. К основным параметрам трансформатора относятся номинальные мощность, напряжение, ток; напряжение к. а.; ток х. х.; потери х. х. и к. з.
а
Рис. 2-28. Принципиальные
схемы трансформаторов.
Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.
Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора. Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду,— это U/корень из 3.
Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют по ее номинальной мощности и номинальному напряжению.
Напряжение короткого замыкания — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному. Напряжение КЗ определяют по падению напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора.
Ток холостого хода характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции.
Потери холостого хода Рх и короткого замыкания Рк определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи. Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.).