
- •Технические характеристики и конструкции современных синхронных генераторов.
- •2. Системы охлаждения синхронных генераторов.
- •3. Параметры и типы систем возбуждения синхронных генераторов.
- •4. Электромашинная система возбуждения генераторов и ее характеристики.
- •Тиристорные системы независимого и зависимого возбуждения.
- •Автоматическое гашение магнитного поля генераторов.
- •6. Включение генераторов на параллельную работу.
- •7. Синхронные компенсаторы и схемы их включения в сеть.
- •Типы силовых трансформаторов и их параметры.
- •Схемы, группы соединения обмоток и способы заземления нейтралей трансформаторов разных уровней напряжений.
- •11. Элементы конструкции силовых трансформаторов.
- •Системы охлаждения силовых трансформаторов.
- •Нагрузочная способность силовых трансформаторов.
- •14. Особенности конструкции и режимов работы автотрансформаторов.
- •Регулирование напряжения трансформаторов
- •16. Особенности регулирования напряжения ат.
- •17. Виды схем электрических соединений электростанций и требования к главным схемам соединений.
- •Структурные схемы выдачи мощности тэц.
- •Схемы ру с одной системой сборных шин. Достоинства, недостатки, область применения.
- •21. Упрощенные схемы ру 35-220 кВ.
- •22. Схема ру с одной рабочей и обходной системами шин.
- •23. Кольцевые схемы ру (треугольник, четырехугольник, расширенный четырехугольник).
- •24. Схема ру с 3/2 выключателя на цепь.
- •25. Технико-экономическое обоснование выбора структурной схемы выдачи мощности тэц.
- •34.Выбор мощности трансформаторов в структурных схемах кэс и аэс.
- •35.Потребители энергии в системе собственных нужд станций. Величины расхода энергии на сн станций разных типов. Номинальные напряжения сетей электроснабжения собственных нужд.
- •36.Самозапуск электродвигателей механизмов собственных нужд тэц.
- •42.Конструкция ору-330 кВ выполненного по схеме 3/2 выключателя на цепь.
- •43.Конструктивное исполнение ру-110 кВ с одной секционированной и обходной системой шин.
- •45.Комплектные ру. Принципы конструктивного исполнения.
- •46.Конструктивное исполнение крун, круэ.
- •47.Комплектные трансформаторные подстанции.
- •48. Компоновка тэц. Конструкции токоведущих частей тэц.
- •49. Принципы управления электростанциями.
- •50. Виды схем вторичных устройств.
- •51 .Монтажные схемы вторичных устройств.
- •52.Исполнение цепей напряжения вторичных устройств.
- •53.Установки постоянного оперативного тока на эс. Аккумуляторные батареи эс.
- •54.Принципы построения схемы генерирования и распределения постоянного оперативного тока на тэц.
- •55.Переменный и выпрямленный оперток.
- •56. Требования к схемам дистанционного управления выключателями.
- •57. Принципы построения схем дистанционного управления высоковольтными выключателями с электромагнитными приводами.
- •58.Особенности схем ду воздушными выключателями с пофазным управлением.
- •59. Принципы построения схем аварийной сигнализации.
- •60.Принципы построения схем предупредительной сигнализации.
- •61. Воздушные автоматические выключатели. Конструкции выключателей с электромагнитными и тепловыми расцепителями (серии а 3200).
- •62. Воздушные автоматические выключатели с полупроводниковыми расцепителями.
- •63. Контакторы и магнитные пускатели. Схема управления магнитным пускателем.
- •65. 3Ру. Достоинства, недостатки, область применения. Принципы конструктивного исполнения.
- •66. Выбор числа и мощности трансформаторов на подстанции.
- •67. Схема с двумя системами сборных шин
- •64. Контакторы и магнитные пускатели. Схема с реверсивным пускателем.
- •66. Уровни ткз в современных системах и способы их ограничения.
Технические характеристики и конструкции современных синхронных генераторов.
ТГ –это быстроходные машины с горизонт распол вала. Ротор выполн из цельной поковки спец стали, облад высок магн и мех св-ми. Ротор выполн неявнополюсным. В акт части ротора фрезеруются пазы, в кот укладыв обмотка возбуждения. Она закрепл легкими клиньями из дюралюминия. По обеим сторонам ротора на валу устан вентиляторы, обеспеч циркуляцию воздуха в машине. Статор сост из корпуса и сердечника. Корпус сварной. Сердечник набирается из листов электротехнич стали 0.5 мм. Листы набирают пакетами, между кот оставляют вентиляц каналы. В пазы во внутр расточке сердечника уклад двухслойная обм.
Гидр турбины имеют малую часоту вращения (60-600 об/мин). Тихоходные машины. ГГ выполн с явнопол ротором и вертик распол вала. Сердечником служит обод, собираемый на спицах, которые крепятся на втулке ротора. Полюсы делаются наборными из стальных листов и монтир на ободе ротора с пом Т-образных выступов. На полюсах распол обм возбужд и демпферная обм (для успокоения колебаний ротора при резком измен нагрузки). Статор ГГ такой же как и у ТГ, но он выполн разъемным, т.е. делится по окр на 2-6 равных частей, что облегчает транспортировку.
2. Системы охлаждения синхронных генераторов.
В процессе эксплуатации генераторов изоляция обмоток стареет. Причиной этого являются загрязнение, увлажнение, окисление кислородом воздуха, воздействие электрического поля и электрических нагрузок и т. д. Главной причиной старения изоляции является ее нагрев. Чем выше температура нагрева изоляции, тем быстрее она изнашивается, тем меньше срок ее службы. Для того чтобы температура нагрева не превышала допустимых значений, все генераторы выполняют с искусственным охлаждением. По способу отвода тепла от нагретых обмоток статора и ротора различают косвенное и непосредственное охлаждение.
При косвенном охлаждении охлаждающий газ (воздух или водород) с помощью вентиляторов, встроенных в торцы ротора, подается внутрь генератора и прогоняется через немагнитный зазор и вентиляционные каналы. При этом охлаждающий газ не соприкасается с проводниками обмоток статора и ротора и тепло, выделяемое ими, передается газу через значительный тепловой барьер — изоляцию обмоток. При непосредственном охлаждении охлаждающее вещество (газ или жидкость) соприкасается с проводниками обмоток генератора, минуя изоляцию и сталь зубцов, т. е. непосредственно.
Воздушное охлаждение. Существуют две системы воздушного охлаждения — проточная и замкнутая.Проточную систему охлаждения лишь в турбогенераторах мощностью до 2 MB-А, а также в гидрогенераторах до 4 MB-А. При этом через генератор прогоняется воздух из машинного зала, который быстро загрязняет изоляцию обмоток статора и ротора. При замкнутой системе охлаждения один и тот же объем воздуха циркулирует по замкнутому контуру. Для увеличения поверхности соприкосновения нагретых частей с охлаждающим воздухом в активной стали машины выполняют систему вентиляционных каналов.
Косвенное водородное охлаждение турбогенераторов. Турбогенераторы с косвенным водородным охлаждением имеют в принципе такую же схему вентиляции, как и при воздушном охлаждении. Отличие состоит в том, что объем охлаждающего водорода ограничивается корпусом генератора, в связи с чем охладители встраиваются непосредственно в корпус. Генераторы с косвенным водородным охлаждением могут при необходимости работать и с воздушным охлаждением, но при этом их мощность соответственно уменьшается.
Непосредственное водородное охлаждение турбогенераторов. Еще больший эффект по сравнению с косвенным водородным охлаждением дает непосредственное (внутреннее) охлаждение, когда водород подается внутрь полых проводников обмотки. В генераторах этого типа выполнено также непосредственное охлаждение обмоток статора. Водород подается в тонкостенные трубки из немагнитной стали, заложенные внутри стержней обмотки и открытые в лобовых частях. Генераторы с непосредственным водородным охлаждением на воздушном охлаждении работать не могут, так как обмотка, рассчитанная на форсированное охлаждение водородом, при работе на воздушном охлаждении перегреется и выйдет из строя.
Непосредственное жидкостное охлаждение генераторов. При выполнении непосредственного жидкостного охлаждения генераторов в качестве охлаждающей жидкости применяют дистиллированную воду или масло, которые обладают более высокой теплоотводящей способностью по сравнению с водородом и, следовательно, позволяют еще больше увеличить единичные мощности генераторов при сохранении их размеров.