
- •Кафедра автоматизации технологических процессов и производств
- •Введение
- •Раздел 1. Основы построения интегрированных систем проектирования и управления (исПиУ)
- •1. Понятие исПиУ. Ее место в системе автоматизации предприятия.
- •2. Структура и функции исПиУ.
- •Классы микропроцессорных комплексов
- •Операционные системы контроллеров
- •Средства технологического программирования контроллеров
- •3. Концепция комплексной автоматизации производства.
- •Современные направления развития микропроцессорных средств управления
- •4. Этапы создания асутп.
- •4.1. Общие положения.
- •4.2. Стадии и этапы создания ас.
- •4.3. Содержание работ.
- •5. Обеспечение исПиУ.
- •6. Понятие открытой системы. Применение открытых систем в промышленной автоматизации.
- •7. Принципы и технологии создания открытых программных систем.
- •Описание межпрограммного протокола – dde
- •Описание типового интерфейса общения программ – ole
- •Приложения типа «клиент-сервер»
- •Описание технологии – com/dcom
- •Описание компонентной объектной архитектуры - corba
- •Описание взаимодействия на базе архитектуры ActiveX
- •Описание языка запросов к реляционным субд - sql
- •Описание обмена программ с субд на базе драйвера odbc
- •Раздел 2. Системы диспетчерского управления и сбора данных (scada-системы)
- •8. Scada-системы. Основные понятия, история возникновения scada-систем.
- •9. Характеристики scada-программ.
- •9.1. Общие сведения о scada-программах:
- •9.2. Структурные особенности scada-программ.
- •9.3. Функциональные характеристики scada-систем.
- •9.4 Технические характеристики scada-систем.
- •9.5. Характеристики полноты открытости scada-систем.
- •9.6. Эксплуатационные характеристики scada-систем.
- •9.7. Стоимостные характеристики scada-систем.
- •10. Рабочее место диспетчера (оператора). Графический интерфейс пользователя.
- •Требования эргономики при разработке арм
- •11. Механизм ole for Process Control (opc) как основной способ взаимодействия scada-системы с внешним миром.
- •12. Ведение архивов данных в scada-системе. Тренды. Алармы.
- •12.1. Тренды.
- •12.2. Алармы.
- •13. Встроенные языки программирования.
- •14. Базы данных в scada. Основные понятия бд. Краткая история развития бд.
- •15. Базы данных в scada. Особенности промышленных баз данных. Microsoft sql-сервер. Основные характеристики.
- •16. Industrial sql Server – развитие Microsoft sql Server. Продукт Plant2sql.
- •Функциональные возможности и характеристики Industrial sql Server
- •Области применения Industrial sql Server
- •18. Вопросы надежности scada-систем.
- •Основные понятия теории надежности
- •Резервирование в scada-системах
- •19. Выбор scada-системы.
- •19.1. Общий поход.
- •19.2. Выбор scada-системы.
- •20. Тенденции развития scada-систем.
- •Раздел 3. Примеры существующих scada-систем
- •21. Система InTouch.
- •1. Общие сведения
- •2. Структура
- •3. Функциональные возможности
- •4. Аппаратно-программная платформа
- •5. Коммуникационные возможности
- •6. Распространение системы в снг
- •7. Стоимость
- •22. Ситема Citect.
- •1. Общие сведения
- •2. Структура
- •3. Функциональные возможности
- •4. Аппаратно-программная платформа
- •5. Коммуникационные возможности
- •6. Распространение системы в снг
- •7. Стоимость
- •23. Система genesis32.
- •1. Общие сведения
- •2. Структура
- •3. Функциональные возможности
- •4. Аппаратно-программная платформа
- •5. Коммуникационные возможности
- •6. Распространение системы в снг
- •7. Стоимость
- •24. Система trace mode.
- •1. Общие сведения
- •2. Структура
- •3. Функциональные возможности
- •4. Аппаратно-программная платформа
- •5. Коммуникационные возможности
- •6. Распространение системы в снг
- •7. Стоимость
- •Словарь использованных терминов
- •Список литературы
- •Internet-сайты, посвященные промышленной автоматизации и scada-системам:
19. Выбор scada-системы.
19.1. Общий поход.
В большинстве SCADA-систем присутствуют многократно описанные и широко известные базовые свойства, но технологии и средства их реализации достаточно сильно отличаются. Именно мера реализации каждого свойства в SCADA-системе определяет необходимость и удобство разработки прикладного программного обеспечения (новые драйверы ввода-вывода, графические объекты, встроенные языки программирования, встроенные библиотеки) Для оптимизации процедуры разработки прикладного ПО важны три фактора:
1) степень соответствия выбранного SCADA-пакета решаемой задаче;
2) понимание тонкостей реализации конкретной прикладной системы поставщиками SCADA-системы;
3) качество осуществляемой поставщиками технической поддержки.
При выборе ПО (инструмента) для задач АСУТП можно выделить два принципиально разных подхода. Первый из них – создание собственного ПО силами группы собственных специалистов. Второй – использование готового ПО. Рассмотрим их последовательно.
Программировать самим или покупать готовую SCADA-систему? Причинами, побуждающими к созданию собственного инструмента, могут являться:
1) намерение сэкономить средства;
2) попытка создать инструмент, удовлетворяющий всем функциональным запросам;
3) стремление избавиться от зависимости от поставщика.
Расходы на создание собственно ПО складываются из следующих компонентов:
1) заработная плата;
2) аренда помещения;
3) затраты на поддержание рабочего цикла (коммунальные услуги, услуги банка, уплата налогов, закупка канцелярии, расходные материалы);
4) средства связи;
5) командировки;
6) закупка оборудования, мебели, оргтехники, ПО, необходимого для работы;
7) расходы, связанные с тестированием производимого продукта.
Как показывают экспертные оценки, средняя сумма, затрачиваемая на покупку готовой SCADA-системы, меньше суммы, затрачиваемой на собственную разработку, более чем в шесть раз. Произведенные расчеты позволяют с уверенностью сказать, что разработка программного обеспечения АСУ ТП силами заказчика не дешевле, а значительно дороже, чем при использовании готовой SCADA. Кроме того, при этом есть еще ряд существенных недостатков:
1) потери времени за счет существенно более длительного срока разработки проекта;
2) риск, связанный с обкаткой ПО на собственном предприятии.
Относительно опасения заказчиков по поводу функциональной несостоятельности той или иной SCADA-системы можно с уверенностью сказать, что большинство современных SCADA-систем способны решить любую задачу АСУТП. Исключение составляют только специальные задачи. Современные SCADA-системы удовлетворяют потребностям более 90% потребителей.
При попытке освободиться от зависимости от производителя SCADA-системы, взявшись за создание собственного инструмента, заказчик как раз и попадает в такую зависимость. Удержать независимый коллектив разработчиков куда сложнее, чем крупную серьезную компанию с огромным опытом, ориентированную на получение постоянного дохода.
Не стоит также забывать, что собственная разработка, как правило, менее эффективна (профессиональные SCADA пишутся опытными специализированными коллективами, а собственная – методом проб и ошибок). Конвейерное производство всегда дешевле ручной сборки, а SCADA-система, в данном случае, это продукт, сошедший с конвейера.
Использование готовой SCADA-системы, снимает с пользователя такие вопросы, как развитие ПО, зависимость от разработчика, качество ПО. Современные широко известные SCADA-пакеты имеют тысячи инсталляций и десятки тысяч человеко-лет полевой проверки.