- •1.Вклад русских и зарубежных ученых в развитие электротехники
- •2 Соединение трехфазных потребителей в «звезду»
- •3.Основные сведения об электрическом поле
- •4.Первый закон Киргофа
- •5.Энергия электрического поля. Энергия магнитного поля.
- •6.Линейная цепь переменного тока с реальным конденсатором
- •7.Соединение трехфазных потребителей в «треугольник»
- •8.Напряженность электрического поля
- •10.Поляризация диэлектриков. Виды поляризации.
- •11.Магнитные цепи. Прямая и обратная задачи
- •12.Последовательное соединение индуктивности и емкости на переменном токе.
- •17.Разветвленная неоднородная магнитная цепь
- •18.Напряжение в электрическом поле
- •19.Закон электромагнитной индукции
- •20.Пробой диэлектриков. Виды пробоев
- •21.Заряд-разряд конденсатора
- •22.Электрический ток проводимости
- •23.Параллельное соединение пассивных элементов
- •24.Электрическая емкость
- •25.Трехфазное напряжение
- •26.Величина и направление электрического тока
- •27. Смешанное соединение пассивных элементов. Метод свертывания.
- •28.Соединение конденсаторов.
- •29.Правило правой руки
- •30.Закон Ома
- •31.Последовательное соединение индуктивности и емкости на переменном токе
- •32.Теорема Остроградского-Гаусса
- •33.Преобразование «треугольника» сопротивлений в звезду Причина преобразования треугольника в звезду
- •Формулы для расчета преобразования треугольника в звезду
- •34. Закон коммутации
- •35.Взаимное преобразование электрической и механической энергии
- •36.Сверхпроводимость
- •37.Линейная цепь переменного тока с реальным конденсатором
- •38.Магнитный поток, магнитосцепление
- •39.Преобразование «звезды» сопротивлений в треугольник
- •40.Линейная цепь переменного тока с реальной индуктивностью
- •41.Сверхпроводимость
- •42.Метод узловых напряжений
- •43.Магнитное поле цилиндрической катушки
- •44.Метод узловых и контурных уравнений
- •Метод контурных токов
- •45.Фазное и линейное напряжение
- •46.Векторная диаграмма
- •47.Электрическая цепь и ее основные элементы
- •48.Метод контурных токов
- •49.Взаимоиндуктивность
- •50.Линейные цепи переменного тока. Цепь с активным сопротивлением
- •Цепь переменного тока с индуктивным сопротивлением.
- •51.Фазные и линейные токи
- •Четырехпроводная система трехфазного тока
- •52.Закон электромагнитной индукции
- •53.Источники электрической энергии
- •54.Закон Кулона
- •55.Магнитное поле в ферромагнитиках
- •56.Разветвленная неоднородная магнитная цепь
- •57.Закон Ленца
- •58.Реактивная мощность. Поверхностный эффект
- •59.Напряженность магнитного поля
- •60.Магнитные цепи. Прямая и обратная задачи
- •61.Соединение трехфазных потребителей в «звезду»
- •62.Магнитное сопротивление
33.Преобразование «треугольника» сопротивлений в звезду Причина преобразования треугольника в звезду
При расчете электрической цепи бывают случаи, когда нет ни последовательных, ни параллельных соединений сопротивлений. В этом случае можно попробовать отыскать соединение сопротивлений треугольником и выполнить экивалентное преобразование треугольника в звезду.

Если в электрической цепи нашли соединение сопротивлений треугольником, то в узлы соединения сопротивлений подставляем концы лучей соединения сопротивлений в виде звезды.

Далее убираем (удаляем первоначальное) соединение треугольником. В результате получается эквивалентное соединение звездой.

Формулы для расчета преобразования треугольника в звезду
34. Закон коммутации
Переходные
процессы вызываются коммутацией в
цепи. Коммутация–
это замыкание или размыкание коммутирующих
приборов (рис. 4.3). В результате таких
внезапных изменений параметров в
электрической цепи происходит переход
из энергетического состояния,
соответствующего докоммутационному
режиму, к энергетическому состоянию,
соответствующему послекоммутационному
режиму.
При анализе переходных процессов пользуются двумя законами (правилами) коммутации.
Первый закон коммутации: в любой ветви с катушкой ток и магнитный поток в момент коммутации сохраняют те значения, которые они имели непосредственно перед коммутацией, и дальше начинают изменяться с этих значений.Иначе: ток через катушку не может измениться скачком. Этот закон можно записать в виде равенства
![]()
Для доказательства закона достаточно рассмотреть уравнение цепи (рис. 4.4), составленное по второму закону Кирхгофа
![]()
Если
допустить, что ток в цепи изменяется
скачком, то напряжение на катушке
будет равно бесконечности ![]()

Тогда в цепи не соблюдается закон Кирхгофа, что невозможно.
В случае нескольких цепей связанных взаимной индуктивностью, но не имеющих в каждой катушке магнитных потоков рассеяния, в момент
Рис. 4.4 коммутации общий магнитный поток не может измениться скачком, тогда как токи в каждой из этих цепей могут измениться скачком.
Второй закон коммутации: в любой ветви напряжение и заряд на конденсаторе сохраняют в момент коммутации те значения, которые они имели непосредственно перед коммутацией, и в дальнейшем изменяются, начиная с этих значений.
Иначе: напряжение
на конденсаторе не может измениться
скачком
![]()
Для доказательства закона рассмотрим уравнение цепи (рис. 4.5) по второму закону Кирхгофа
Рис
4.4. ![]()
Если
допустить, что напряжение на конденсаторе
изменяется скачком, то производная
а
второй закон Кирхгофа нарушается. Однако
ток через конденсатор
![]()
может изменяться скачком, что не противоречит второму закону Кирхгофа.
С энергетической точки зрения невозможность скачка тока через катушку и напряжения на конденсаторе объясняются невозможностью мгновенного изменения запасенных в них энергии магнитного поля катушки Li2/2 и энергии электрического поля конденсатора Cu2/2. Для этого потребовалась бы бесконечно большая мощность источника, что лишено физического смысла.
