
- •1. Классификация методов и физической природы внешних воздействий на организм человека используемых при лечении и профилактики заболеваний
- •1.1 Классификация лечебных физических факторов
- •2. Физическое обоснование гальванизации и электрофореза
- •Электрические принципиальные схемы аппаратов гальванизации
- •3. Электровозбудимость мышц
- •4. Виды сигналов. Сигналы электростимуляции смт и ддт Виды сигналов электростимуляции
- •5. Электростимуляция органов дыхания
- •6. Аппараты электросна. Аппараты электросна и электроанальгезии
- •7. Физиологическое обоснование применения электрического воздействия при лечении болевых синдромов
- •8. Основные сведения о электрической кардиостимуляции
- •9. Аппарат чрескожной электростимуляции
- •10. Электростимуляция внутренних органов и опорно-двигательного аппарата
- •Многоканальная электростимуляция опорно-двигательного аппарата
- •12. Механизм воздействия магнитного поля на организм магнитные свойства вещества. Механизмы действия магнитных полей на живой организм
- •13. Разновидности магнитных полей.
- •14. Электромагнит.
- •16. Магнитотерапевтические аппараты локального, распределенного, общего действия. Структурные схемы.
- •17. Механизм лечебного воздействия аэроионами.
- •18. Аппарат франклинизации.
- •19. Конструкции аппаратов терапии аэрозолями
- •20. Электротерапевтические высокочастотные аппараты Физические обоснования и методики проведения процедур высокочастотной терапии
- •21. Аппараты местной дарсонвализации. Форма и параметры сигналов. Аппараты для дарсонвализации и терапии током надтональной частоты
- •22. Источники увч излучения
- •23. Электрохирургия
- •24. Биологическое воздействие ультразвука.
- •Аппаратная реализация аппаратов ультразвуковой терапии
- •25. Цели и задачи реабилитации
- •26. Последовательность реабилитационных мероприятий
- •27. Выявление и оценка последующих заболеваний и травм
- •28. Методы медицинской реабилитации больных и инвалидов:
- •29. Трудотерапия
- •30 . Физиотерапия
- •Метод и устройство программируемой электростимуляции мышц при патологической ходьбе.
- •33. Ортезотерапия.
- •34. Искусственные имплантанты в офтальмологии.
- •35. Биоуправляемые ортопедические аппараты. Принцип действия биоуправляемых протезов.
- •36. Искусственные клапаны сердца
- •37. Механотерапия
- •38. Искусственная почка.
- •39. Метод биологической обратной связи
- •40. Метод компьютерных лечебно-оздоровительных игр
- •40. Метод биоуправляемой магнитотерапии
- •42. Квантовая терапия и биоуправление
- •43. Физические основы работы лазера
- •45. Общие положения
- •46. Порядок разработки и утверждения медико-технических требований
- •47. Разработка, изготовление и испытания опытных образцов
- •14.3.2. Приемочные технические испытания
- •14.3.3. Государственные приемочные испытания средств измерения медицинского назначения.
- •14.3.4. Приемочные санитарно-гигиенические испытания
- •14.3.5. Приемочные медицинские испытания
- •48. Принятие решения о целесообразности применения и производства медицинского изделия
- •49. Постановка медицинского изделия на производство
- •50. Снятие медицинского изделия с производства
1. Классификация методов и физической природы внешних воздействий на организм человека используемых при лечении и профилактики заболеваний
1.1 Классификация лечебных физических факторов
Первая группа — постоянный электрический ток низкого напряжения (гальванизация, лекарственный электрофорез).
Вторая группа — импульсные токи низкого напряжения (электросон, диадинамотерапия, амплипульстерапия, интерференцтерапия, флюктуоризация, электродиагностика, электростимуляция).
Третья группа — электрические токи высокого напряжения (диатермия, ультратонотерапия, местная дарсонвализация).
Четвертая группа — электрические, магнитные и электромагнитные поля различных характеристик (франклинизация, магнитотерапия, индуктотермия, ультравысокочастотная терапия, микроволновая терапия).
Пятая группа — электромагнитные колебания оптического (светового) диапазона (терапия инфракрасным, видимым и ультрафиолетовым излучением, лазерная терапия).
Шестая группа — механические колебания среды (массаж, ультразвуковая терапия, лекарственный фонофорез, вибротерапия).
Седьмая группа — измененная или особая воздушная среда (ингаляционная или аэрозольтерапия, электроаэро-зольтерапия, баротерапия, аэроионотерапия, климате рапия и др.).
Восьмая группа — пресная вода, природные минеральные воды и их искусственные аналоги.
Девятая группа — тепло (теплолечение) и холод (криотерапия, гипотермия). В качестве термолечебных сред используют лечебные грязи (пелоиды), парафин, озокерит, нафталан, песок, глину, лед и др.
Особую группу составляют сочетанные методы, позволяющие использовать два физических фактора и более (Л.А. Комарова, Г.И. Егорова). С каждым годом они получают все большее распространение в медицине.
2. Физическое обоснование гальванизации и электрофореза
Ткани тела человека, имеющие весьма разнородную структуру, состоят в основном из белковых коллоидов, относительно плохо проводящих электрический ток, и растворов неорганических солей К, Nа, Са, Мg, являющихся хорошими проводниками и определяющих поэтому электропроводность ткани.
Наилучшей электропроводностью обладают жидкости организма (кровь, лимфа и др.), а также ткани, обильно пропитанные тканевой жидкостью, как, например, мышечная ткань. Тканевые жидкости по составу близки к плазме крови и также представляют собой смесь коллоидных растворов органических и неорганических солей. Общая концентрация солей в тканевой жидкости соответствует 0,85-0,90% раствору поваренной соли (изотонический раствор).
Плохими проводниками электрического тока являются нервная (мозговая), соединительная, жировая ткани. К очень плохим проводникам, скорее к диэлектрикам, относятся грубоволокнистая соединительная ткань, сухая кожа и особенно кость, лишенная надкостницы.
Оценивая электропроводность различных участков организма в целом, и, особенно, устанавливая пути распределения тока между электродами, наложенными в определенных местах на поверхности тела, следует иметь в виду, что именно содержание тканевой жидкости определяет электропроводность тканей и органов, поэтому ток между электродами проходит не по кратчайшему расстоянию, как в однородном веществе, а главным образом вдоль потоков тканевой жидкости, кровеносных и лимфатических сосудов, содержащих жидкость оболочек нервных стволов, и т. п. В связи с этим распределение путей тока в живом организме может быть очень сложным и захватывать области, отдаленные от места наложения электродов.
Метод гальванизации заключается в воздействии на ту или иную часть тела постоянным током относительно небольшой плотности. Ток от источника подводится к тканям с помощью проводов и пластинчатых, обычно свинцовых электродов. Свинец применяется в связи с его пластичностью. Кроме того, вследствие малой подвижности тяжелые ионы свинца почти не принимают участия в образовании тока между электродами. Однако наложение металлических электродов непосредственно на кожу недопустимо, так как образующиеся на их поверхности продукты электролиза основного тканевого электролита - водного раствора хлористого натрия (на отрицательном электроде гидроокись натрия и водород, а на положительном - хлорид водорода и кислород) будут оказывать на кожу прижигающее действие.
Чтобы исключить контакт продуктов электролиза с кожей, под электрод помещают прокладку толщиной около 1 см из хорошо смачивающегося материала: байки, фланели или бумазеи.
Величину тока при гальванизации устанавливают, исходя из площади прокладки и плотности тока, которая обычно находится в пределах 0,05-0,2 мА/см2.
Сопротивление цепи между электродами при различных процедурах находится в весьма широких пределах. Это сопротивление складывается из переходного сопротивления между электродами и прокладками, сопротивления самих прокладок, переходного сопротивления между прокладками и кощей и, наконец, сопротивления кожи и тканей тела, по которым проходит ток. При этом надо учитывать, что переходное сопротивление между прокладкой и кожей, так же как и сопротивление самой кожи, зависит от плотности тока и времени его действия. При длительном контакте кожи с влажной прокладкой поверхность ее увлажняется, и сопротивление ороговевшего слоя эпидермиса значительно снижается.
Под действием гальванического тока в тканях, расположенных между электродами, усиливается крове- и лимфообращение, стимулируются обменные процессы, проявляется болеутоляющее действие.
При электрофорезе образуется сложная цепь из растворов, которыми пропитаны прокладки, и электролитов (в основном хлорида натрия), входящих в состав тканей организма. При этом ионы или заряженные частицы соответствующего знака из раствора, которым смочена прокладка, переходят в подлежащие ткани организма, а из тканей организма навстречу им поступают ионы натрия или хлора.
Рис. 2.1 – Схема движения ионов при электрофорезе
С помощью электрофореза вводится обычно не более 10-20% содержащегося в растворе лекарственного вещества.
Введенные в организм ионы не проникают на большую глубину, они задерживаются в коже и подкожной клетчатке в области расположения электродов, образуя так называемое «кожное депо», из которого затем постепенно в течение длительного срока путем диффузии переходят в общий ток крови и разносятся по всему организму.
Особенностью лекарственного электрофореза является обеспечивание повышенную фармакологическую эффективность лекарства.