- •Тема 1. Предмет и задачи статистики
- •Контрольные вопросы по теме 1.
- •Тема 2. Статистические наблюдения
- •Контрольные вопросы по теме 2.
- •Тема 3. Группировка и сводка данных наблюдения
- •Контрольные вопросы по теме 6.
- •Контрольные вопросы по теме 11.
- •Контрольные вопросы по теме 13.
- •Тема 14. Статистическая проверка гипотез
- •Контрольные вопросы по теме 14. Введение
- •Контрольные вопросы по теме 1.
- •1.1. Роль и значение статистики в обществе. Основные этапы развития статистической науки. Связь дисциплины «Статистика" с другими дисциплинами
- •1.2. Предмет статистики
- •1.3. Общие понятия о статистической методологии (о методе статистики)
- •1.4. Система учёта и статистики, задачи статистики
- •1.5. Организация статистики в Республике Беларусь
- •1.6. Отчетность предприятий и ее виды
- •1.7. Специальные статистические наблюдения и их виды
- •Контрольные вопросы по теме 1
- •Тема 2. Статистические наблюдения
- •Контрольные вопросы по теме 2.
- •2.1. Сущность статистического наблюдения и его задачи
- •2.2. Формы организации статистического наблюдения
- •2.3. Виды статистического наблюдения
- •2.4. Программа статического наблюдения
- •2.5. Способы учета фактов в статистических наблюдениях
- •2.6. Ошибки статистического наблюдения. Меры по обеспечению надежности статистической информации
- •2.7. Пути совершенствования статистического наблюдения
- •Контрольные вопросы по теме 2
- •Тема 3. Группировка и сводка данных наблюдения
- •3.1. Сущность классификации и группировки, их задачи
- •3.2. Виды группировок и их назначение
- •3.3. Понятие, виды и принципы выбора группировочных признаков
- •3.4. Образование групп и определение интервалов группировок. Система статистических показателей
- •3.5. Содержание и значение сводки
- •3.6. Программа статистической сводки и ее основных элементов
- •3.7. Организация и техника сводки. Территориальный и отраслевой разряды сводки статистических материалов
- •3.8. Принципы современной организации обработки статистических данных
- •Контрольные вопросы по теме 3
- •Тема 4. Анализ статических данных и проблема измерения связи
- •4.1. Сущность и основные принципы анализа статической информации
- •4.2. Содержание основных этапов анализа статических данных
- •4.3. Содержание и виды статических расчётов
- •4.4 Основные приёмы (методы) анализа статических данных
- •4.5. Задачи измерения связи в статистике. Основные виды связей между явлениями (признаками)
- •Контрольные вопросы по теме 4
- •Тема 5. Статистические таблицы
- •5.1. Общие понятия о статистических таблицах
- •5.2. Виды статистических таблиц
- •5.3. Основные правила составления и анализа статистических таблиц
- •Контрольные вопросы по теме 5
- •Тема 6. Ряды распределения
- •Контрольные вопросы по теме 6.
- •6.1. Понятие и виды статистических рядов
- •6.2. Графический метод изучения рядов распределения
- •6.3. Понятие о закономерностях статического распределения. Теоретические кривые распределения
- •6.4. Свойства основных кривых распределения
- •Контрольные вопросы по теме 6
- •Тема 7. Абсолютные и относительные величины
- •7.1. Значение и виды статистических показателей. Проблема совершенствования системы статистических показателей
- •7.2. Абсолютные статистические величины
- •7.3. Относительные величины
- •7.4. Отношения между разноимёнными показателями
- •Контрольные вопросы по теме 7
- •Тема 8. Средние величины и показатели вариации
- •8.1. Сущность и значение средних величин в статистике
- •8.2. Виды средних
- •8.3. Средняя арифметическая, ее свойства и техника исчисления
- •8.4. Средняя гармоническая
- •8.5. Структурные средние величины (мода и медиана)
- •8.6. Показатели вариации
- •8.7. Техника исчисления простых показателей вариации
- •8.8. Основные показатели вариации. Свойства дисперсии, методы ее расчета
- •8.9. Сложение дисперсий изучаемого признака
- •8.10. Упрощенные способы вычисления средней арифметической и среднего квадратического отклонения
- •8.11. Основные правила применения средних в статистике
- •Контрольные вопросы по теме 8
- •Тема 9. Ряды динамики
- •9.1. Понятия рядов динамики и их виды
- •9.2. Обеспечение сопоставимости в рядах динамики
- •9.3. Основные характеристики рядов динамики
- •9.4. Средние показатели в рядах динамики
- •9.5. Изучение основной тенденции развития (тренда)
- •9.6. Выявление и изучение сезонных колебаний
- •9.7. Совместный анализ нескольких рядов динамики
- •Контрольные вопросы по теме 9
- •Тема 10. Индексы
- •10.1 Общее понятие об индексах. Классификация индексов
- •Индексы классифицируются по ряду признаков:
- •10.2. Индивидуальные индексы
- •10.3. Агрегатная форма общего индекса
- •Агрегатный индекс физического объема (реализации) товарооборота.
- •10.4. Преобразование агрегатного индекса в индексы средних
- •10.5. Индексы переменного и фиксированного состава
- •10.6. Другие виды индексов
- •10.7. Система взаимосвязанных индексов
- •Контрольные вопросы по теме 10
- •Тема 11. Графические изображения в статистике
- •Контрольные вопросы по теме 11.
- •11.1. Понятие о статических графиках. Основные элементы графика
- •11.2. Виды статистических графиков. Графики сравнения
- •11.3. Наглядное изображение структуры и структурных сдвигов
- •11.4. Контроль выполнения плана с помощью графиков
- •Контрольные вопросы по теме 11
- •Тема 12. Выборочный метод в статистических исследованиях
- •12.1. Выборочное статистическое наблюдение и его виды
- •12.2. Ошибка выборки
- •12.3. Обоснование численности выборки
- •А) для доли альтернативного признака
- •12.4. Способы распространения характеристик выборки на генеральную совокупность
- •12.5.Способы отбора единиц из генеральной совокупности
- •12.6. Малая выборка
- •Контрольные вопросы по теме 12
- •Тема 13. Корреляционная связь и ее статистическое изучение
- •13.1. Предпосылки изучения корреляционной связи
- •13.2. Статистические методы выявления корреляционной связи
- •13.3. Статистическое измерение тесноты корреляционной связи. Показатели меры тесноты корреляционной связи
- •13.4. Корреляция рангов
- •Примеры на ранговые корреляции
- •13.5 Множественная и частная корреляция
- •13.6. Статистические исследования формы корреляционной связи. Линия регрессии и уравнение регрессии
- •13.7. Статистическое исследование зависимости между качественными признаками
- •13.8. Изучение корреляционной зависимости между рядами динамики
- •Контрольные вопросы по теме 13
- •Тема 14. Статистическая проверка гипотез
- •Контрольные вопросы по теме 14.
- •14.1. Сущность и задачи статистической проверки гипотез
- •14.2. Критерий как инструмент проверки статистической гипотезы. Выбор типа критической области
- •14.3. Проверка гипотезы о принадлежности выделяющих единиц исследуемой генеральной совокупности
- •14.4. Понятие о критерии согласия (проверка гипотезы о соответствии эмпирического распределения нормальному)
- •14.5. Проверка гипотезы о величине средней арифметической и доли
- •14.6. Понятие о критерии для измерения связи
- •Контрольные вопросы по теме 14
- •Литература
- •220013, Минск, п. Бровки, 6
8.7. Техника исчисления простых показателей вариации
Разнообразные показатели вариации (абсолютные, средние и относительные статистические показатели) можно условно разделить на две части:
простые;
требующие более сложных вычислений (основные показатели вариации).
К первой группе можно отнести размах вариации, среднее линейное отклонение, относительное линейное отклонение.
Наиболее простым показателем колеблемости (вариации) признака является размах вариации, который характеризует собой абсолютную величину разности между максимальным и минимальным значением вариант изучаемого признака:
.
Легкость вычисления и достаточная простота истолкования этой характеристики степени вариации обусловили достаточно широкое ее использование. Например, при контроле качества изделий в целях выявления, не изменяется ли процесс изготовления вследствие влияния какой-либо систематически воздействующей причины, через определенные промежуточные отрезки времени отбирается несколько экземпляров и определяется R по основному параметру изделия. Показатель размаха вариации будет характеризовать устойчивость режима производственного процесса.
Размах вариации по своему содержанию может улавливать только крайние отклонения и не отражает отклонений всех вариант в ряду.
Чтобы дать обобщающую характеристику не только размаху (амплитуде), но и распределению отклонений, исчисляют другой показатель вариации - среднее линейное отклонение ( ) или, что то же самое, среднее из отклонений.
В статистике термин “отклонение от средней” означает разность между вариантой и средней арифметической в данной совокупности. При этом всегда предполагается, что среднюю вычитают из варианты, а не наоборот. Отсюда положительное отклонение всегда указывает, что данная варианта больше средней, а отрицательное отклонение показывает, что варианта меньше средней.
При характеристике вариации с учетом отклонений каждого из вариантов от их средней величины нужно иметь в виду, что:
отклонений при этом получается столько, сколько и самих вариантов;
сумма всех таких отклонений, по свойству средней арифметической, всегда равняется нулю.
Поэтому для обобщенной характеристики размера этих отклонений условно допускается, что все отклонения имеют одинаковый знак и рассчитывается их средняя величина. Таким образом, среднее арифметическое (линейное) отклонение исчисляется из модулей отклонений (взятых без их знака) по формуле средней арифметической:
,
где - без учета знака.
Среднее линейное отклонение как мера вариации признака в статистической практике применяется редко. Во многих случаях этот показатель не раскрывает полной картины степени рассеивания (вариация) признака.
Рассмотренные показатели вариации (R и ) являются именованными числами, т.е. выражаются в той же единице измерения, в какой выражены варианты и средняя арифметическая данного вариационного ряда. В статистических исследованиях приходится изучать характер рассеивания в различных распределениях: когда ряды представлены различными объемами совокупности для одного и того же признака, при различных значениях средних по одноименным признакам, для сравнения различных совокупностей.
В этих случаях для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Расчет показателей меры относительной вариации осуществляется как отношение абсолютного или среднего показателя вариации к средней арифметической, умножаемое на 100%.
Используя в качестве абсолютного показателя рассеивания размах вариации (R) рассчитывается такой показатель относительного рассеивания как коэффициент осцилляции.
.
Аналогично для среднего линейного отклонения ( ) рассчитывается относительное линейное отклонение.
.