
- •Предмет и задачи экологии.
- •Экология как наука о надорганизменных биокосных системах, отличие живого от неживого, саморегуляция биокосных систем.
- •Биосфера, учение в.И. Вернадского о биосфере, учение в.Н. Сукачева о биогеоценозах.
- •Экосистема, популяция, биогеоценоз.
- •Саморегуляция биологических систем.
- •Биомасса и ее химический состав.
- •Малый или биологический круговорот веществ.
- •Круговорот воды, водорода, кислорода и углерода.
- •Круговорот азота и серы.
- •Круговорот фосфора и минеральных элементов.
- •Большой или геологический круговорот веществ.
- •Поток энергии в биосфере. Энтропийность биосферных процессов.
- •Методы научного исследования в экологии. Положение экологии в системе наук о природе. Прикладное значение экологии.
- •Краткий очерк развития экологии. Первоначальное накопление экологических знаний в додарвинский период. Роль ч. Дарвина и э. Геккеля в формировании экологии.
- •Экология в конце XIX и первой половине XX вв. Экологические исследования во второй половине XX века (послевоенный период).
- •Экологические факторы. Классификация экологических факторов.
- •Влияние экологического фактора на организм, концепция лимитирующих факторов.
- •Совместное действие экологических факторов. Жизненные формы.
- •Закономерности распределения солнечной радиации и температуры на Земле. Роль температуры в жизни растений и животных. Эвритермные и стенотермные виды.
- •Деление организмов на группы в зависимости от источников тепла и способности к терморегуляции.
- •Свет как экологический фактор. Видимый свет, фар, значение света в жизни растений и животных.
- •Экологические группы растений и животных по отношению к свету.
- •Сигнальное значение света. Биологические ритмы.
- •Значение воды в жизни организмов. Общая характеристика водообеспеченности наземных организмов.
- •Источники воды у растений и животных. Роль влажности воздуха в жизни организмов.
- •Экологические группы организмов по отношению к воде.
- •Водно-солевой обмен у морских организмов.
- •Водно-солевой обмен у пресноводных организмов.
- •Водно-солевой обмен у наземных организмов.
- •Вода как среда обитания организмов. Экологические группы водных организмов.
- •Пища как экологический фактор.
- •Определение понятия популяция. Численность и плотность популяции. Абсолютная и относительная плотность.
- •Размеры популяций. Верхний и нижний пределы плотности популяций.
- •Рождаемость и плодовитость. Смертность. Выживаемость.
- •Рост и скорость роста. Типы роста популяций.
- •Половой и возрастной состав популяции. Генетический полиморфизм.
- •Пространственная структура популяций. Типы размещения особей в популяциях.
- •Пространственная структура популяций у оседлых и кочующих животных.
- •Флуктуации и регуляция численности. Определение понятий флуктуации и регуляция численности. Периодические и непериодические флуктуации.
- •Регуляция численности популяции. Факторы регуляции численности независимые и зависимые от плотности. Регуляция численности на популяционном уровне.
- •Структура межвидовых взаимодействий. Классификация межвидовых взаимодействий.
- •Межвидовая конкуренция. Эксперименты г.Ф. Гаузе. Математическая модель межвидовой конкуренции.
- •Хищничество и паразитизм.
- •Аменсализм. Симбиоз, комменсализм, протокооперация, мутуализм.
- •Консорции.
- •Экологическая ниша.
- •Пространственная структура наземных биогеоценозов. Морфологическая структура фитоценоза. Вертикальная и горизонтальная структура фитоценоза. Фитоценотические и биогеоценотические горизонты.
- •Вертикальное и горизонтальное расчленение почвы. Вертикальная и горизонтальная неоднородность климата в биогеоценозе.
- •Пространственная структура гидроценозов.
- •Определение понятий продуктивность и продукция. Виды продукции.
- •Пищевые цепи, пищевые сети, трофические уровни. Превращение энергии в пределах трофического уровня и при переходе с одного уровня на другой.
- •Климат как компонент биогеоценоза. Определение понятий погода и климат. Макро-, мезо-, микро- и фитоклимат. Фитоклимат леса. Фитоклимат травянистых сообществ. Климат водоемов.
- •Горная порода, почва как компонент биогеоценоза. Горные породы и их роль в почвообразовании.
- •Определение понятия почва. Строение почвы. Почвообразовательный процесс. Гумусообразование.
- •Роль продуцентов в биогеоценозах. Методы изучения продуктивности. Продуктивность особи и популяции одного и того же вида. Продуктивность популяций разных видов.
- •Функциональная деятельность микроорганизмов в биогеоценозах. Почвенные сообщества микробов. Закономерности распространения бактерий.
- •Обратимые и необратимые изменения биогеоценозов. Эволюции. Нарушения.
- •Сукцессии, их классификация. Первичные и вторичные сукцессии. Основные закономерности сукцессионных смен.
- •Понятие о климаксе в биогеоценологии. Теории моно- и поликлимакса.
- •Основные закономерности распределения биогеоценотического покрова на Земле.
- •Проблемы классификации биогеоценотических систем.
- •Учение о горизонтальной зональности природы. Вертикальная поясность. Учение о неоднородности биогеоценотического покрова.
- •Экологические принципы в различных сферах практической деятельности человека, в промышленности, сельском хозяйстве, строительстве и т.Д.
- •Основные направления прикладной экологии. Экология – научная база разработки проблем рационального природопользования и охраны природы.
- •Экологическая индикация состояния окружающей среды. Экологическая экспертиза. Экологический мониторинг.
- •Охрана окружающей среды (атмосферы, почвы, океанических и континентальных вод) от загрязнений.
- •Организация охраны живой природы. Заповедники, заказники, памятники природы, Красные Книги.
Свет как экологический фактор. Видимый свет, фар, значение света в жизни растений и животных.
Свет как экологический фактор имеет важнейшее значение уже потому, что является источником энергии для процессов фотосинтеза, т. е. участвует в образовании органических веществ из неорганических составляющих. Он играет большую и разнообразную роль в различных жизненных процессах у животных, что определяется его физическими свойствами.
Строго говоря, в экологии под термином «свет» подразумевается весь диапазон солнечного излучения, представляющий собой поток энергии в пределах длин волн от 0,05 до 3000 нм1 и более. Этот поток радиации распадается на несколько областей, отличающихся физическими свойствами и экологическим значением для живых организмов. Границы этих областей не четки; в общем виде их можно представить следующим образом:
< 150 нм —зона ионизирующей радиации;
150—400 нм — ультрафиолетовая радиация (УФ);
400—800 нм — видимый свет (границы отличаются для разных организмов);
800—1000 нм —инфракрасная радиация (ИК).
За пределами зоны ИК-радиации располагается область так называемой дальней инфракрасной радиации — мощного фактора теплового режима среды. ИК-радиация в основном несет тепловую энергию
зрение распространено в разных группах животных пятнисто: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов тех же групп оно может отсутствовать.
Интенсивность фотосинтеза варьируется с изменением длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.
И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.
Продолжительность светового дня, или фотопериод, является "реле времени" или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых. Некоторые высшие растения цветут при увеличении длины дня (растения длинного дня), другие зацветают при сокращении дня (растения короткого дня). У многих организмов, чувствительных к фотопериоду, настройку биологических часов можно изменить экспериментальным изменением фотопериода.
Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.
Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Например, доза 2 Зв (зивера) – вызывает гибель зародышей некоторых насекомых на стадии дробления, доза 5 Зв приводит к стерильности некоторых видов насекомых, доза 10 Зв абсолютно смертельна для млекопитающих. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.
Воздействие малых доз радиации оценить сложнее, так как они могут вызвать отдаленные генетические и соматические последствия. Например, облучение сосны дозой 0,01 Зв в сутки на протяжении 10 лет вызвало замедление скорости роста, аналогичное однократной дозе 0,6 Зв. Повышение уровня излучения в среде над фоновым приводит к повышению частоты вредных мутаций.
У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.
У высших животных не обнаружено такой простой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам радиации вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани костного мозга. Даже очень низкие уровни хронически действующего ионизирующего излучения могут вызвать в костях и в других чувствительных тканях рост опухолевых клеток, что может проявиться лишь через много лет после облучения.