- •1.1 Логические элементы ттл / ттлш: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.2 Логические элементы с тремя состояниями выхода. Принцип действия. Упорядочение работы нескольких элементов на одну общую линию интерфейса (магистральные интерфейсы)
- •1.3 Логические элементы мот / кмоп: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.4 Триггеры: классификация и краткая характеристика различных типов триггеров. Особенности Схемотехнические реализации и работа.
- •1.5 Регистры: назначение и классификация. Параллельные и последовательный регистр. Особенности Схемотехнические реализации и работа.
- •Классификация:
- •1.6 Счетчики: назначение и классификация. Асинхронных счетчики. Особенности Схемотехнические реализации и работа.
- •1.7. Синхронное счетчики: особенности Схемотехнические реализации и работа.
- •1.8. Дешифратор: определение, классификация, способы построения и функционирования. Линейные или одноступенчатый дешифратор.
- •1.9 Шифратор. Определение, принципы построения и особенности функционирования. Клавиатурные, приоритетные Шифратор, кодоперетворювачи.
- •1.10. Мультиплексор: определение, принципы построения и функционирования.
- •1.11. Демультиплексор: определение, принципы построения и функционирования.
- •1.12. Сумматоры комбинационного типа: назначение, классификация и принципы построения.
- •1.13. Накапливающие сумматоры. Особенности их функционирования.
- •1.14 Моделирование Аналоговых или цифровых схем с помощью пакетов ewb и micro-cap: последовательность действий при моделировании. Получение и оформления результатов.
- •Мультиметр
- •Генератор слов
- •Логический анализатор
- •Логический преобразователь
- •Осциллограф
- •Разработка схем цифровых устройств
- •5.1. Вывод элементов схем на рабочую поверхность
- •Монтаж схем
- •1.16 Основные функции алгебры логики и логические элементы для их реализации. Законы алгебры логики.
- •1.17 Синтез Логическая схема в базисе (и, или, не), и-не, или-не.
- •1.18 Типы данных и структуры управления в мп intel (на примере 486)
- •1.19. Архитектура системного интерфейса современных пк. Назначение компонентов. Режимы передачи информации по системными шинами.
- •1.20. Распределение системных ресурсов между компонентов пк. Технология PnP и ее реализация в шинах pci и isa / eisa.
- •1.21. Средства кэширования мп. Назначение и характеристики. Типы кэш-памяти. Режимы работы при чтении / записи информации
- •1.22. Назначение и организация системной памяти. Физическая организация микросхем пзу, статические и динамические озу. Типы динамической памяти (fpm, edo, bedo, sdram)
- •1.23. Архитектура и принцип работы часов реального времени rtc и cmos памяти. Возможности программирования
- •1.24. Архитектура системного таймера и назначения каналов таймера. Режимы работы каналов таймера. Возможности программирования
- •1.25. Архитектура и организация подсистемы dma (кпдп) в пк. Управляющая информация и программирование
- •1.26. Организация прерываний в пк, приоритеты при обработке прерываний. Режимы работы и программирование
- •1.27. Архитектура и принцип работы подсистемы клавиатуры. Назначение компонентов и возможности программирования
- •1.28. Архитектура видеосистемы пк. Управления видеосистемой. Режимы. Структура видеопамяти
- •1.29. Логическая организация дисковый накопитель внешней памяти. Основные области (boot, fat, root, data area)
- •1.30. Архитектура и управления контроллеры нжмд. Структура управления
- •1.31. Архитектура и управления com-портом. Назначение регистров
- •1.32. Архитектура и управления lpt портом в режимах ecp epp
- •1.33. Архитектура scsi шины
- •1.34. Архитектура usb шины
- •2.1 Методы разделения каналов в многоканальных системах передачи данных
- •2.2 Превращение кодирования, модуляция. Назначение этих процессов при передаче данных. Теорема Котельникова (Найквиста)
- •2.3 Модуляция. Разновидности модуляции. Скорость манипуляции
- •2.4 Количество информации. Энтропия. Излишество
- •2.5 Классификация помех. Свойства флуктуационных помех. Сравнение методов манипуляции по помехоустойчивости
- •2.6 Амплитудная манипуляции. Модулятор и детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.7 Частотная манипуляция. Модулятор, детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.8 Фазовая манипуляция. Спектр сигнала и нужная полоса пропускания канала. Относительная фазовая манипуляция метода
- •2.9. Разновидности фазовой манипуляции: двфм, твфм, кам
- •2.10. Классификация систем передачи данных по борьбе с ошибками
- •2.11. Классификация погрешностных кодов. Выражения для расчета вероятности обнаружения ошибки для кодов с постоянным весом для кодов с контролем по паритету
- •2.12. Первичные коды и способы расширение кодировочной таблицы. Esc - последовательности принтеров
- •2.13. Причины использования модуляция при передачи данных. Разновидности модуляция и необходимые полосы пропускания линий связи
- •2.14. Геометрическая интерпретация сигналов и помех. Идеальный приемник Котельникова и другие варианты построение приёмников двоичных сигналов
- •2.15. Синхронизация в аппаратуре передачи данных и в устройствах считывания магнитных записей, способы кодирования, который повышают надежности синхронизации битов
- •2.16. Модемы как периферийные устройства. Система управления хейз. Модемы серия mnp. Особенности модемов классов mnp-5, 7,10. Команды модема
- •2.17. Методы магнитного записывания информации и их применение
- •2.18. Частотный и модифицированный частотный методы записи информации. Формат сектора на гибком диске. Способы позиционирования головок в дисковых устройствах магнитного записывания информации
- •1. Частотная модуляция.
- •2. Модифицированная частотная модуляция.
- •2.19 Элементы формата сектора, обеспечивающие битовую и байтовую синхронизацию при считывания информации с гибких дисков
- •2.20. Компьютерные сети. Классификация сетей. Общие характеристики глобальных, локальных, корпоративных сетей (отделов, кампусов, предприятий). Виртуальные частные сети (vpn - virtual private network)
- •2.22. Стандарт многоуровневого управления сетью (модель взаимодии открытых систем open system interconnection, osi). Понятие протокола, интерфейса, стек протоколов
- •2.24. Протоколы канального уровня: асинхронный, синхронный (символьно-ориентированные, бит-ориентированные). Протоколы с установкой соединение и без установки
- •Асинхронные протоколы
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Передача с установлением соединения и без установления соединения
- •2.25 Локальная сеть Ethernet. Топологии, стандарты, доступ к сети, структура кадров, расчет производительности, коллизии, домен коллизий и организация работы сети
- •Время двойного оборота и распознавание коллизий
- •Максимальная производительность сети Ethernet
- •Форматы кадров технологии Ethernet
- •Транспортные функции глобальной сети
- •Глобальные связи на основе сетей с коммутацией каналов
- •Типы адресов стека tcp/ip
- •Классы ip-адресов.
- •Отображение ip-адресов на локальные адреса
- •Отображение доменных имен на ip-адреса
- •Система доменных имен dns
- •2.28.Протокол ip и его функции. Структура ip-пакета и его параметры. Маршрутизация в ip-сетях. Фрагментация ip-пакетов. Сборка фрагментов.
- •Источники и типы записей в таблице маршрутизации:
- •Фрагментация ip-пакетов
- •2.29. Тенденции развития микропроцессорная техника. Структура и режимы функционирования современных микропроцессоров
- •2.30. На базі існуючих технічних рішень провести розробку структурної схеми мікропроцесора.
- •2.31. Сегментация памяти в защищенном режиме. Разработка дескрипторов сегментов формирование линейной адреса при обращении к памяти
- •Сегмент характеризуется такими параметрами:
- •Структура дескриптора сегмента:
- •2.32. Обработка прерываний в защищенном режиме. Виды исключений. Формирование дескриптивный таблице прерываний
- •Структура дескриптора idt:
- •2.33. Розробка обробників зовнішніх апаратних переривань, виключень та програмних переривань
- •2. 34 Защита памяти. Уровни привилегий. Особенности защиты сегментов данных, стеки, кода и устройств ввода / вывода
- •В микропроцессоре реализовано 4 уровня привилегий:
- •Правила зашиты памяти:
- •Правила доступа для шлюзов:
- •2.35. Аппаратные средства поддержки многозадачной работы микропроцессора. Структура таблици состояния задач. Алгоритмы и механизмы переключения задач
- •2.36.Алгоритмы и механизмы переключения задач
- •2.37. Страничная организация памяти. Разработка указателей таблиц и страниц. Формирования физического адреса для 4к-, 2м-и 4м-байтных страниц
- •3.1. Средства защиты носителей информации. Запись за пределами поля форматирования. Изменение длины сектора. Чередование секторов
- •Времянезависимые способы защиты от копирования Инженерные дорожки
- •Нестандартная длина сектора
- •Способы защиты, опирающиеся на временные параметры
- •Проверка чередования секторов на дорожке
- •Требования:
- •Принципы построения:
- •Защита информации на нжмд может осуществляться с помощью:
- •3.5. Процессы. Контекст процесса. Состояния процессов и переходы между ними. Системные вызовы для обеспечения жизненного цикла процесса
- •3.6. Управление памятью. Основные задачи. Модели памяти. Системные вызовы для работы с памятью
- •Распределение памяти разделами переменной величины(без использования внешней памяти).
- •Перемещаемые разделы(без использования внешней памяти).
- •Страничное распределение(с использованием внешней памяти).
- •Сегментное распределение(с использованием внешней памяти).
- •Странично-сегментное распределение(с использованием внешней памяти).
- •3.7. Ос. Состав ос. Требования к современных ос. Архитектурные направления построения ос
- •Монолитные системы
- •Многоуровневые системы
- •Модель клиент-сервер и микроядра
- •3.8. Монопольные ресурсы. Проблема тупиков. Дисциплины распределения ресурсов. Поиск тупиков и их уничтожение
- •3.9. Параллельное выполнение процессов. Формулировка задачи «производитель-потребитель» и методы ее решения
- •3.10. Средства взаимодействия процессов. Сравнительная характеристика базовых механизмов ipc
- •3.12 Субд. Основные функции. Виды субд
- •Основные функции субд
- •Управление транзакциями
- •Журнализация
- •Поддержка языков бд
- •3.13 Реляционные базы данных. Основные понятия, свойства отношений, модель данных, реляционные операции и вычисления. Базовые понятия реляционных баз данных
- •1. Тип данных
- •2. Домен
- •3. Схема отношения, схема базы данных
- •4. Кортеж, отношение
- •Фундаментальные свойства отношений
- •1.Отсутствие кортежей-дубликатов
- •2. Отсутствие упорядоченности кортежей
- •3. Отсутствие упорядоченности атрибутов
- •4. Атомарность значений атрибутов.
- •Реляционные операции и счисление.
- •3.14.Цветовые пространства rgb и cmyk. Сфера действия и и причины их различия. Получение цвета одного пространства через значение цветов другое
- •3.15 Получения в windows программах изображения примитивов. Точки
- •3.16 Провести сравнение технологий взаимодействия процессов в локальной сети. Почтовые ящики. Именованные каналы. Удаленного вызова процедур. Гнезда
- •3.17 Провести сравнение методов построения многоуровневых программных средств. Динамические библиотеки. Com и activex. Провайдеры. Службы. Драйвера
- •3.18 Общие требования и архитектуры интерфейса пользователя. Возможности, преимущества и недостатки диалоговых, однодокументным и многодокументным приложений
- •3. 19. Типы данных и структуры команд в мп Intel
- •3.20 Организация прерываний в пк. Приоритеты при обработке прерываний. Режимы работы и программирование
- •Типы прерываний.
- •3.21 Архитектура видеосистемы пк. Управления видеосистемой
- •3.22 Режимы видеосистемы. Структура видеопамяти
- •3.23 Логическая организация дисковых накопителей внешней памяти. Основные области (boot, fat, root, data area)
- •Структура boot области
- •3.24 Двоичная логика. Булевая функция одной и двух переменных. Количество булевых функций n-переменных. Суперпозиция булевых функций
- •3.25. Тестовая диагностика сетей пк. Утилиты ping: организация работы, типы сообщений. Объясните возможен пример работы утилиты
- •Технические характеристики системной платы
- •3.27. Видеосистема пк. Основные эксплуатационные характеристики. Получение информации про видеосистему пк и результатов тестирования с помощью программы класса checkit. Объяснить возможные результаты
- •3.28. Реализация анимации изображения в web-страницы с использованием дополнительных графических файлов и без них (только текст html-файл)
- •3.29. Цвет как средство управления психики и поведения человека. Реализация цветовой гармонии в графическом изображении
- •Пятие цветовой гармонии :
- •3.30. Спектральные характеристики человеческого глаза и причина использования rgb системы в мониторах. Технические и психофизиологические ограничения воспроизведение цвета
- •3.31 Реляционные базы данных. Транзакции и целостность баз данных. Изолированность пользователей. Журнал перемен
- •Транзакции и целостность баз данных
- •Журнализация изменений бд
- •3.32 Язык запросов sql. Команда select и структура запрос на выборку
- •Предложение select
- •3.33 Язык запросов sql. Работа с записями и таблиц. Добавление, удаление, модификация
- •3.34. Архитектуры построения систем клиент-сервер. Варианты построения серверной приложений. Варианты построения клиентская приложений
- •3.35. Драйверы. Назначение, структура. Механизм работы драйвера. Примеры драйверов
- •3.36. Управление процессорным временем. Модель планировщика и диспетчера процессорного времени. Приоритеты процессов
- •3.37. Управление процессорным временем. Вытесняющая и невитисняющая дисциплина планирования процессорного времени
3.35. Драйверы. Назначение, структура. Механизм работы драйвера. Примеры драйверов
3.35. ДРАЙВЕРИ. ПРИЗНАЧЕННЯ, СТРУКТУРА. МЕХАНІЗМ РОБОТИ ДРАЙВЕРА. ПРИКЛАДИ ДРАЙВЕРІВ.
Модули ОС, которые осуществляют трансляцию однотипных для всех устройств обращений к ним из процессов и из других модулей ОС в специфические для устройства управляющие воздействия и управляют выполнением этих воздействий, называются драйверами. Каждому типу устройства соответствует свой драйвер. Драйвер устройства имеет два основных уровня. Первый (верхний) уровень принимает системные вызовы от процессов и формирует на основании каждого вызова запрос. Этот же уровень выстраивает запросы в очередь и поддерживает упорядоченность этой очереди в соответствии с принятой дисциплиной обслуживания. Второй (нижний) уровень драйвера выбирает из очереди первый запрос и обслуживает его: формирует управляющие воздействия и передает их на устройство, обрабатывает прерывания от устройства и сообщает ядру ОС о наступлении событий, связанных с вводом-выводом.
Хотя в современных системах предпочтение отдается именно древовидной структуре подключения, возможна и более сложная структура, допускающая подключение устройства к нескольким контроллерам, а контроллера - к нескольким каналам. Реальный адрес устройства может формироваться, таким образом, динамически. В недревовидной структуре подключения возможна как симметричная конфигурация (все устройства подключены ко всем контроллерам, все контроллеры - ко всем каналам), так и несимметричная. В последнем случае выбор траффика усложняется.
Для принятия решений о доступности устройств ОС поддерживает таблицы дескрипторов, отражающие состояние станций траффика (три таблицы - по числу типов станций). Для канала дескриптор включает в себя: идентификатор канала; состояние (занят/свободен); список контроллеров, подключенных к каналу; список запросов к каналу. Для контроллера: идентификатор контроллера; состояние; список каналов, к которым подключен контроллер; список устройств, подключенных к контроллеру; список запросов к контроллеру. Для устройства: идентификатор устройства; состояние; список контроллеров, к которым подключено устройство; список запросов к устройству. Логически являясь частью ОС, драйверы, тем не менее оформляются как отдельные модули. Поскольку каждый драйвер однозначно связан с устройством определенного типа (а возможно, и данной модификации), то и состав набора драйверов зависит от конфигурации аппаратных средств. Кроме того, обязательно должна быть обеспечена возможность подключения к системе новых внешних устройств без внесения изменений в ОС. При модульности драйверов это достигается простым добавлением нового драйвера к системному программному обеспечению. Драйверы загружаются в память либо при загрузке системы, либо (реже) - динамически, при возникновении потребности в них. Выбор драйверов для загрузки выполняется либо по явным указаниям в процедуре инициализации ОС (OS/2), либо неявно - по имеющимся таблицам конфигурации системы (VM/ESA, MVS/ESA) либо полностью автоматически - путем опроса при загрузке всех установленных устройств, опознания их и подключения соответствующих драйверов. Последний принцип получил название plug and play (включил и играй).
Примеры драйверов устройств: Приводимые ниже примеры показывают, что на драйверы некоторых устройств часто возлагаются дополнительные функции помимо непосредственного управления вводом-выводом.
Драйвер системных часов. Вычислительные системы имеют один или два таймера. Обязательным является линейный таймер, генерирующий прерывания центрального процессора через фиксированные интервалы времени. Возможен также программируемый таймер, работающий независимо от линейного, который генерирует однократное прерывание через заданный интервал времени от момента задания. Прерывания такого таймера иногда называются сигналом тревоги (alarm). Если программируемый таймер отсутствует, он может быть смоделирован при помощи интервального таймера и программных средств.
Драйвер линейного таймера осуществляет только обработку его прерываний и в типовом случае может выполнять следующие действия по каждому прерыванию: - модифицировать системные структуры данных службы времени и даты; - увеличивать счетчик виртуального времени активного процесса; - если планирование процессов ведется с квантованием времени, уменьшать счетчик кванта активного процесса и, если счетчик обратился в ноль, вызывать планировщик; - если не используется программируемый таймер - уменьшать счетчик тревоги и, если он обратился в ноль, вызывать системную задачу, ожидающую этого сигнала. Линейный таймер может поддерживать целый список таких сигналов тревоги, используемых разными процессами и системными службами, временные выдержки могут задаваться для обеспечения протоколов обмена, измерения производительности системы и т.п.
Драйвер клавиатуры. Этот драйвер предназначен для ввода символов с клавиатуры терминала. В большинстве аппаратных архитектур нажатие любой клавиши на клавиатуре вызывает прерывание. Обработчик этого прерывания в типовом случае выполняет: - чтение кода клавиши и перевод его в код символа; - запоминание кодов символов в своем буфере; - распознавание специальных клавиш и комбинаций клавиш (например, Ctrl+Break) и вызов специальных их обработчиков; - обработку специальных клавиш редактирования содержимого буфера (например, BackSpace).
Большинство драйверов позволяют пользователю терминала производить упреждающий ввод данных - до того, как на них поступит запрос из программы. Введенные данные становятся доступными для чтения при нажатии специальной клавиши (например, Enter). Код этой клавиши сохраняется в буфере как признак конца строки. При поступлении запроса на чтение данных с клавиатуры драйвер выбирает из буфера строку - до признака конца строки. Если этот признак отсутствует, то процесс, выдавший запрос, блокируется до появления законченной строки в буфере драйвера. Некоторые драйверы запоминают введенные строки в стеке и обрабатывают также специальные клавиши, позволяющие выбирать строки из стека.
Драйверы дисковых запоминающих устройств. Обычной функцией такого драйвера является перевод виртуального адреса на диске в реальный (физический). Физический адрес на диске состоит из трех компонент: головка, дорожка, сектор (в дисковых архитектурах без разбиения на сектора - смещение на дорожке). Драйвер же формирует для процессов виртуальный диск, представляемый, как линейная последовательность секторов, виртуальным адресом является номер сектора.
Интересной функцией дискового драйвера может быть планирование запросов на ввод-вывод с целью повышения эффективности обмена. В соответствии со структурой физического адреса доступ к данным на диске состоит из трех этапов - выборок составляющих этого адреса: выбора головки, выбора дорожки и выбора сектора. Выбор головки чтения/записи производится простым электрическом переключением практически мгновенно. Выбор дорожки - самый времяемкий этап: он требует механического перемещения головок к требуемой дорожки; время этого перемещения зависит от расстояния перемещения. Выбор сектора на дорожке требует ожидания момента, когда требуемый сектор окажется под головкой (за счет вращения диска), время выбора сектора много меньше времени выбора дорожки.
Драйвер упорядочивает очередь запросов таким образом, чтобы минимизировать среднее время поиска дорожки. Обсуждение стратегий обслуживания мы далее ведем, исходя из предположения о случайном распределении запросов по пространству диска. Обслуживание очереди по дисциплине FCFS, очевидно, приведет к хаотическому перемещению головок и в результате - к невысокой пропускной способности драйвера и значительным механическим нагрузкам на дисковод.
