
- •1.1 Логические элементы ттл / ттлш: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.2 Логические элементы с тремя состояниями выхода. Принцип действия. Упорядочение работы нескольких элементов на одну общую линию интерфейса (магистральные интерфейсы)
- •1.3 Логические элементы мот / кмоп: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.4 Триггеры: классификация и краткая характеристика различных типов триггеров. Особенности Схемотехнические реализации и работа.
- •1.5 Регистры: назначение и классификация. Параллельные и последовательный регистр. Особенности Схемотехнические реализации и работа.
- •Классификация:
- •1.6 Счетчики: назначение и классификация. Асинхронных счетчики. Особенности Схемотехнические реализации и работа.
- •1.7. Синхронное счетчики: особенности Схемотехнические реализации и работа.
- •1.8. Дешифратор: определение, классификация, способы построения и функционирования. Линейные или одноступенчатый дешифратор.
- •1.9 Шифратор. Определение, принципы построения и особенности функционирования. Клавиатурные, приоритетные Шифратор, кодоперетворювачи.
- •1.10. Мультиплексор: определение, принципы построения и функционирования.
- •1.11. Демультиплексор: определение, принципы построения и функционирования.
- •1.12. Сумматоры комбинационного типа: назначение, классификация и принципы построения.
- •1.13. Накапливающие сумматоры. Особенности их функционирования.
- •1.14 Моделирование Аналоговых или цифровых схем с помощью пакетов ewb и micro-cap: последовательность действий при моделировании. Получение и оформления результатов.
- •Мультиметр
- •Генератор слов
- •Логический анализатор
- •Логический преобразователь
- •Осциллограф
- •Разработка схем цифровых устройств
- •5.1. Вывод элементов схем на рабочую поверхность
- •Монтаж схем
- •1.16 Основные функции алгебры логики и логические элементы для их реализации. Законы алгебры логики.
- •1.17 Синтез Логическая схема в базисе (и, или, не), и-не, или-не.
- •1.18 Типы данных и структуры управления в мп intel (на примере 486)
- •1.19. Архитектура системного интерфейса современных пк. Назначение компонентов. Режимы передачи информации по системными шинами.
- •1.20. Распределение системных ресурсов между компонентов пк. Технология PnP и ее реализация в шинах pci и isa / eisa.
- •1.21. Средства кэширования мп. Назначение и характеристики. Типы кэш-памяти. Режимы работы при чтении / записи информации
- •1.22. Назначение и организация системной памяти. Физическая организация микросхем пзу, статические и динамические озу. Типы динамической памяти (fpm, edo, bedo, sdram)
- •1.23. Архитектура и принцип работы часов реального времени rtc и cmos памяти. Возможности программирования
- •1.24. Архитектура системного таймера и назначения каналов таймера. Режимы работы каналов таймера. Возможности программирования
- •1.25. Архитектура и организация подсистемы dma (кпдп) в пк. Управляющая информация и программирование
- •1.26. Организация прерываний в пк, приоритеты при обработке прерываний. Режимы работы и программирование
- •1.27. Архитектура и принцип работы подсистемы клавиатуры. Назначение компонентов и возможности программирования
- •1.28. Архитектура видеосистемы пк. Управления видеосистемой. Режимы. Структура видеопамяти
- •1.29. Логическая организация дисковый накопитель внешней памяти. Основные области (boot, fat, root, data area)
- •1.30. Архитектура и управления контроллеры нжмд. Структура управления
- •1.31. Архитектура и управления com-портом. Назначение регистров
- •1.32. Архитектура и управления lpt портом в режимах ecp epp
- •1.33. Архитектура scsi шины
- •1.34. Архитектура usb шины
- •2.1 Методы разделения каналов в многоканальных системах передачи данных
- •2.2 Превращение кодирования, модуляция. Назначение этих процессов при передаче данных. Теорема Котельникова (Найквиста)
- •2.3 Модуляция. Разновидности модуляции. Скорость манипуляции
- •2.4 Количество информации. Энтропия. Излишество
- •2.5 Классификация помех. Свойства флуктуационных помех. Сравнение методов манипуляции по помехоустойчивости
- •2.6 Амплитудная манипуляции. Модулятор и детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.7 Частотная манипуляция. Модулятор, детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.8 Фазовая манипуляция. Спектр сигнала и нужная полоса пропускания канала. Относительная фазовая манипуляция метода
- •2.9. Разновидности фазовой манипуляции: двфм, твфм, кам
- •2.10. Классификация систем передачи данных по борьбе с ошибками
- •2.11. Классификация погрешностных кодов. Выражения для расчета вероятности обнаружения ошибки для кодов с постоянным весом для кодов с контролем по паритету
- •2.12. Первичные коды и способы расширение кодировочной таблицы. Esc - последовательности принтеров
- •2.13. Причины использования модуляция при передачи данных. Разновидности модуляция и необходимые полосы пропускания линий связи
- •2.14. Геометрическая интерпретация сигналов и помех. Идеальный приемник Котельникова и другие варианты построение приёмников двоичных сигналов
- •2.15. Синхронизация в аппаратуре передачи данных и в устройствах считывания магнитных записей, способы кодирования, который повышают надежности синхронизации битов
- •2.16. Модемы как периферийные устройства. Система управления хейз. Модемы серия mnp. Особенности модемов классов mnp-5, 7,10. Команды модема
- •2.17. Методы магнитного записывания информации и их применение
- •2.18. Частотный и модифицированный частотный методы записи информации. Формат сектора на гибком диске. Способы позиционирования головок в дисковых устройствах магнитного записывания информации
- •1. Частотная модуляция.
- •2. Модифицированная частотная модуляция.
- •2.19 Элементы формата сектора, обеспечивающие битовую и байтовую синхронизацию при считывания информации с гибких дисков
- •2.20. Компьютерные сети. Классификация сетей. Общие характеристики глобальных, локальных, корпоративных сетей (отделов, кампусов, предприятий). Виртуальные частные сети (vpn - virtual private network)
- •2.22. Стандарт многоуровневого управления сетью (модель взаимодии открытых систем open system interconnection, osi). Понятие протокола, интерфейса, стек протоколов
- •2.24. Протоколы канального уровня: асинхронный, синхронный (символьно-ориентированные, бит-ориентированные). Протоколы с установкой соединение и без установки
- •Асинхронные протоколы
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Передача с установлением соединения и без установления соединения
- •2.25 Локальная сеть Ethernet. Топологии, стандарты, доступ к сети, структура кадров, расчет производительности, коллизии, домен коллизий и организация работы сети
- •Время двойного оборота и распознавание коллизий
- •Максимальная производительность сети Ethernet
- •Форматы кадров технологии Ethernet
- •Транспортные функции глобальной сети
- •Глобальные связи на основе сетей с коммутацией каналов
- •Типы адресов стека tcp/ip
- •Классы ip-адресов.
- •Отображение ip-адресов на локальные адреса
- •Отображение доменных имен на ip-адреса
- •Система доменных имен dns
- •2.28.Протокол ip и его функции. Структура ip-пакета и его параметры. Маршрутизация в ip-сетях. Фрагментация ip-пакетов. Сборка фрагментов.
- •Источники и типы записей в таблице маршрутизации:
- •Фрагментация ip-пакетов
- •2.29. Тенденции развития микропроцессорная техника. Структура и режимы функционирования современных микропроцессоров
- •2.30. На базі існуючих технічних рішень провести розробку структурної схеми мікропроцесора.
- •2.31. Сегментация памяти в защищенном режиме. Разработка дескрипторов сегментов формирование линейной адреса при обращении к памяти
- •Сегмент характеризуется такими параметрами:
- •Структура дескриптора сегмента:
- •2.32. Обработка прерываний в защищенном режиме. Виды исключений. Формирование дескриптивный таблице прерываний
- •Структура дескриптора idt:
- •2.33. Розробка обробників зовнішніх апаратних переривань, виключень та програмних переривань
- •2. 34 Защита памяти. Уровни привилегий. Особенности защиты сегментов данных, стеки, кода и устройств ввода / вывода
- •В микропроцессоре реализовано 4 уровня привилегий:
- •Правила зашиты памяти:
- •Правила доступа для шлюзов:
- •2.35. Аппаратные средства поддержки многозадачной работы микропроцессора. Структура таблици состояния задач. Алгоритмы и механизмы переключения задач
- •2.36.Алгоритмы и механизмы переключения задач
- •2.37. Страничная организация памяти. Разработка указателей таблиц и страниц. Формирования физического адреса для 4к-, 2м-и 4м-байтных страниц
- •3.1. Средства защиты носителей информации. Запись за пределами поля форматирования. Изменение длины сектора. Чередование секторов
- •Времянезависимые способы защиты от копирования Инженерные дорожки
- •Нестандартная длина сектора
- •Способы защиты, опирающиеся на временные параметры
- •Проверка чередования секторов на дорожке
- •Требования:
- •Принципы построения:
- •Защита информации на нжмд может осуществляться с помощью:
- •3.5. Процессы. Контекст процесса. Состояния процессов и переходы между ними. Системные вызовы для обеспечения жизненного цикла процесса
- •3.6. Управление памятью. Основные задачи. Модели памяти. Системные вызовы для работы с памятью
- •Распределение памяти разделами переменной величины(без использования внешней памяти).
- •Перемещаемые разделы(без использования внешней памяти).
- •Страничное распределение(с использованием внешней памяти).
- •Сегментное распределение(с использованием внешней памяти).
- •Странично-сегментное распределение(с использованием внешней памяти).
- •3.7. Ос. Состав ос. Требования к современных ос. Архитектурные направления построения ос
- •Монолитные системы
- •Многоуровневые системы
- •Модель клиент-сервер и микроядра
- •3.8. Монопольные ресурсы. Проблема тупиков. Дисциплины распределения ресурсов. Поиск тупиков и их уничтожение
- •3.9. Параллельное выполнение процессов. Формулировка задачи «производитель-потребитель» и методы ее решения
- •3.10. Средства взаимодействия процессов. Сравнительная характеристика базовых механизмов ipc
- •3.12 Субд. Основные функции. Виды субд
- •Основные функции субд
- •Управление транзакциями
- •Журнализация
- •Поддержка языков бд
- •3.13 Реляционные базы данных. Основные понятия, свойства отношений, модель данных, реляционные операции и вычисления. Базовые понятия реляционных баз данных
- •1. Тип данных
- •2. Домен
- •3. Схема отношения, схема базы данных
- •4. Кортеж, отношение
- •Фундаментальные свойства отношений
- •1.Отсутствие кортежей-дубликатов
- •2. Отсутствие упорядоченности кортежей
- •3. Отсутствие упорядоченности атрибутов
- •4. Атомарность значений атрибутов.
- •Реляционные операции и счисление.
- •3.14.Цветовые пространства rgb и cmyk. Сфера действия и и причины их различия. Получение цвета одного пространства через значение цветов другое
- •3.15 Получения в windows программах изображения примитивов. Точки
- •3.16 Провести сравнение технологий взаимодействия процессов в локальной сети. Почтовые ящики. Именованные каналы. Удаленного вызова процедур. Гнезда
- •3.17 Провести сравнение методов построения многоуровневых программных средств. Динамические библиотеки. Com и activex. Провайдеры. Службы. Драйвера
- •3.18 Общие требования и архитектуры интерфейса пользователя. Возможности, преимущества и недостатки диалоговых, однодокументным и многодокументным приложений
- •3. 19. Типы данных и структуры команд в мп Intel
- •3.20 Организация прерываний в пк. Приоритеты при обработке прерываний. Режимы работы и программирование
- •Типы прерываний.
- •3.21 Архитектура видеосистемы пк. Управления видеосистемой
- •3.22 Режимы видеосистемы. Структура видеопамяти
- •3.23 Логическая организация дисковых накопителей внешней памяти. Основные области (boot, fat, root, data area)
- •Структура boot области
- •3.24 Двоичная логика. Булевая функция одной и двух переменных. Количество булевых функций n-переменных. Суперпозиция булевых функций
- •3.25. Тестовая диагностика сетей пк. Утилиты ping: организация работы, типы сообщений. Объясните возможен пример работы утилиты
- •Технические характеристики системной платы
- •3.27. Видеосистема пк. Основные эксплуатационные характеристики. Получение информации про видеосистему пк и результатов тестирования с помощью программы класса checkit. Объяснить возможные результаты
- •3.28. Реализация анимации изображения в web-страницы с использованием дополнительных графических файлов и без них (только текст html-файл)
- •3.29. Цвет как средство управления психики и поведения человека. Реализация цветовой гармонии в графическом изображении
- •Пятие цветовой гармонии :
- •3.30. Спектральные характеристики человеческого глаза и причина использования rgb системы в мониторах. Технические и психофизиологические ограничения воспроизведение цвета
- •3.31 Реляционные базы данных. Транзакции и целостность баз данных. Изолированность пользователей. Журнал перемен
- •Транзакции и целостность баз данных
- •Журнализация изменений бд
- •3.32 Язык запросов sql. Команда select и структура запрос на выборку
- •Предложение select
- •3.33 Язык запросов sql. Работа с записями и таблиц. Добавление, удаление, модификация
- •3.34. Архитектуры построения систем клиент-сервер. Варианты построения серверной приложений. Варианты построения клиентская приложений
- •3.35. Драйверы. Назначение, структура. Механизм работы драйвера. Примеры драйверов
- •3.36. Управление процессорным временем. Модель планировщика и диспетчера процессорного времени. Приоритеты процессов
- •3.37. Управление процессорным временем. Вытесняющая и невитисняющая дисциплина планирования процессорного времени
Источники и типы записей в таблице маршрутизации:
Первым источником является программное обеспечение стека TCP/IP.
Вторым источником появления записи в таблице является администратор, непосредственно формирующий запись с помощью некоторой системной утилиты.
Третьим источником записей могут быть протоколы маршрутизации, такие как RIP или OSPF.
Фрагментация ip-пакетов
Протокол IP позволяет выполнять фрагментацию пакетов, поступающих на входные порты маршрутизаторов.Следует различать фрагментацию сообщений в узле-отправителе и динамическую фрагментацию сообщений в транзитных узлах сети - маршрутизаторах. Практически во всех стеках протоколов есть протоколы, которые отвечают за фрагментацию сообщений прикладного уровня на такие части, которые укладываются в кадры канального уровня. В стеке TCP/IP эту задачу решает протокол TCP, который разбивает поток байтов, передаваемый ему с прикладного уровня на сообщения нужного размера (например, на 1460 байт для протокола Ethernet). Поэтому протокол IP в узле-отправителе не использует свои возможности по фрагментации пакетов.
А вот при необходимости передать пакет в следующую сеть, для которой размер пакета является слишком большим, IP-фрагментация становится необходимой. В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение. В большинстве типов локальных и глобальных сетей значения MTU, то есть максимальный размер поля данных, в которое должен инкапсулировать свой пакет протокол IP, значительно отличается. Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI - 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.
IP-пакет может быть помечен как не фрагментируемый. Любой пакет, помеченный таким образом, не может быть фрагментирован модулем IP ни при каких условиях. Если же пакет, помеченный как не фрагментируемый, не может достигнуть получателя без фрагментации, то этот пакет просто уничтожается, а узлу-отправителю посылается соответствующее ICMP-сообщение.
Процедура объединения заключается в помещении данных из каждого фрагмента в позицию, указанную в заголовке пакета в поле «fragment offset».
Каждый модуль IP должен быть способен передать пакет из 68 байт без дальнейшей фрагментации.
2.29. Тенденции развития микропроцессорная техника. Структура и режимы функционирования современных микропроцессоров
2.29. ТЕНДЕНЦІЇ РОЗВИТКУ МІКРОПРОЦЕСОРНОЇ ТЕХНІКИ. СТРУКТУРА ТА РЕЖИМИ ФУНКЦІОНУВАННЯ СУЧАСНИХ МІКРОПРОЦЕСОРІВ.
Год |
Процессор |
Частота |
Разрядность |
Технология |
Память |
Нововведения и особенности |
1971 |
Intel 4004 |
|
4 бит |
|
|
|
1974 |
Intel 8080 |
2 MHz |
8 бит |
6 µ |
64 Kb |
|
1978 |
Intel 8086 |
8 MHz |
16 бит |
3 µ |
1 Mb |
Сегментация памяти. Положил основу семейству x86 |
1982 |
Intel 80286 |
12.5 MHz |
16 бит |
|
16 Mb |
Реализован защищенный режим |
1985 |
Intel 80386 |
20-40 MHz |
32 бит |
1.5 µ |
4 Gb |
Введена страничная организация памяти |
1989 |
Intel 80486 |
50-100 MHz |
|
1 µ |
4 Gb |
Появляется FPU. Встроенная кэш-память. |
1993 |
Pentium |
100-200 MHz |
32 бит |
|
4 Gb |
Суперскалярная архитектура. Блок BTB (буфер адресов ветвления). Разделенный кэш (команд и данных). |
1997 |
Pentium MMX |
133-233 MHz |
32 бит |
|
4 Gb |
57 новых команд MMX (Multimedia Extensions). 8 регистров MMX0-MMX7. Конвейер – 6 стадий. |
1995 |
Pentium Pro |
FSB=66MHz |
32 бит |
|
4 Gb |
Первый процессор семейства P6. Появляется кэш L2 в ядре процессора. Серверный процессор. |
1997 |
Pentium 2 |
FSB=100 MHz |
32 бит |
0.25 µ |
64 Gb |
L2 вынесен из ядра процессора. Первый массовый процессор семейства P6. |
1998 |
Celeron |
FSB=66MHz |
32 бит |
0.25 µ |
64 Gb |
L2 снова внесен в корпус процессора |
1999 |
Pentium 3 Katmai |
FSB=100 MHz |
32 бит |
|
64 Gb |
70 команд SSE (мультимедийные команды с плавающей запятой). Также есть MMX и 3DNow! |
2000 |
Pentium 3 Coppermine |
FSB=133 MHz |
32 бит |
0.18 µ |
64 Gb |
|
2001 |
Pentium 3 Tualatin |
FSB=133 MHz |
32 бит |
0.13 µ |
64 Gb |
|
2000 |
Pentium 4 Willamette |
FSB=400 MHz(4x100) |
32 бит |
0.18 µ |
64 Gb |
Конвейер – 20 стадий. Вместо L1 появляется Trace Cache – кэш трассировки. АЛУ работает с двойной частотой. Добавлены 144 команды SSE2. |
2002 |
Pentium 4 Northwood |
FSB=400 MHz(4x100) |
32 бит |
0.13 µ |
64 Gb |
Позже появляется FSB=533 MHz. 2003 г. FSB=800 MHz. Самое главное – технология Hyper Threading (два логических процессора в одном физическом ядре). |
2002 |
Pentium 4M |
FSB=400 MHz(4x100) |
32 бит |
0.13 µ |
64 Gb |
Мобильная версия Pentium 4. |
2003 |
Pentium M Banias |
FSB=800 Mhz |
32 бит |
0.13 µ |
64 Gb |
Технология Centrino для мобильных устройств. L2 = 1Mb. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Основные тенденции на ближайший год: переход на 64-битную платформу, выпуск двухядерного процессора, переход на технологию 0.06 µ, частота FSB=1033MHz.
Режимы работы современных микропроцессоров:
1. Реальный режим (Real Mode) – полностью совместим с 8086. В этом режиме возможна адресация до 1 Мб физической памяти. 2. Защищенный режим (Protected Mode). В этом режиме процессор позволяет адресовать до 4 Гб физической памяти, через которые при использовании механизма страничной адресации (которая доступна только в защищенном режиме) могут отображаться до 64 Тбайт виртуальной памяти каждой задачи. В защищенном режиме процессор может выполнять дополнительные инструкции, недоступные в реальном режиме. Существует аппаратная поддержка многозадачной работы МП. Есть аппаратная защита памяти. 3. Режим виртуального процессора 8086 (Virtual 8086 Mode). В таком режиме на одном процессоре может параллельно исполняться несколько задач с изолированными друг от друга ресурсами. При этом использование физического адресного пространства памяти управляется механизмами сегментации и трансляции страниц. 4. «Неофициальный» режим Big Real Mode (или Unreal Mode). Позволяет адресоваться ко всему 4-Гбайтному пространству памяти. В этом режиме инструкции исполняются так же, как и в реальном режиме, но с помощью дополнительных сегментных регистров FS и GS программы получают непосредственный доступ к данным во всей физической памяти. 5. Режим системного управления (SMM – System Management Mode). Используется в служебных и отладочных целях.
Структура микропроцессора на примере Intel 80486:
- шинный интерфейс (БШ); - внутренняя кэш-память (кэш); - блок опережающей выборки команд (БПВ); - двухступенчатый дешифратор команд (БДШ); - блок управления (БУ); - целочисленное устройство (БИ); - арифметический сопроцессор (БСопр.); - блок сегментации (БСег.); - блок страничного управления (БСтр.).