
- •1.1 Логические элементы ттл / ттлш: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.2 Логические элементы с тремя состояниями выхода. Принцип действия. Упорядочение работы нескольких элементов на одну общую линию интерфейса (магистральные интерфейсы)
- •1.3 Логические элементы мот / кмоп: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.4 Триггеры: классификация и краткая характеристика различных типов триггеров. Особенности Схемотехнические реализации и работа.
- •1.5 Регистры: назначение и классификация. Параллельные и последовательный регистр. Особенности Схемотехнические реализации и работа.
- •Классификация:
- •1.6 Счетчики: назначение и классификация. Асинхронных счетчики. Особенности Схемотехнические реализации и работа.
- •1.7. Синхронное счетчики: особенности Схемотехнические реализации и работа.
- •1.8. Дешифратор: определение, классификация, способы построения и функционирования. Линейные или одноступенчатый дешифратор.
- •1.9 Шифратор. Определение, принципы построения и особенности функционирования. Клавиатурные, приоритетные Шифратор, кодоперетворювачи.
- •1.10. Мультиплексор: определение, принципы построения и функционирования.
- •1.11. Демультиплексор: определение, принципы построения и функционирования.
- •1.12. Сумматоры комбинационного типа: назначение, классификация и принципы построения.
- •1.13. Накапливающие сумматоры. Особенности их функционирования.
- •1.14 Моделирование Аналоговых или цифровых схем с помощью пакетов ewb и micro-cap: последовательность действий при моделировании. Получение и оформления результатов.
- •Мультиметр
- •Генератор слов
- •Логический анализатор
- •Логический преобразователь
- •Осциллограф
- •Разработка схем цифровых устройств
- •5.1. Вывод элементов схем на рабочую поверхность
- •Монтаж схем
- •1.16 Основные функции алгебры логики и логические элементы для их реализации. Законы алгебры логики.
- •1.17 Синтез Логическая схема в базисе (и, или, не), и-не, или-не.
- •1.18 Типы данных и структуры управления в мп intel (на примере 486)
- •1.19. Архитектура системного интерфейса современных пк. Назначение компонентов. Режимы передачи информации по системными шинами.
- •1.20. Распределение системных ресурсов между компонентов пк. Технология PnP и ее реализация в шинах pci и isa / eisa.
- •1.21. Средства кэширования мп. Назначение и характеристики. Типы кэш-памяти. Режимы работы при чтении / записи информации
- •1.22. Назначение и организация системной памяти. Физическая организация микросхем пзу, статические и динамические озу. Типы динамической памяти (fpm, edo, bedo, sdram)
- •1.23. Архитектура и принцип работы часов реального времени rtc и cmos памяти. Возможности программирования
- •1.24. Архитектура системного таймера и назначения каналов таймера. Режимы работы каналов таймера. Возможности программирования
- •1.25. Архитектура и организация подсистемы dma (кпдп) в пк. Управляющая информация и программирование
- •1.26. Организация прерываний в пк, приоритеты при обработке прерываний. Режимы работы и программирование
- •1.27. Архитектура и принцип работы подсистемы клавиатуры. Назначение компонентов и возможности программирования
- •1.28. Архитектура видеосистемы пк. Управления видеосистемой. Режимы. Структура видеопамяти
- •1.29. Логическая организация дисковый накопитель внешней памяти. Основные области (boot, fat, root, data area)
- •1.30. Архитектура и управления контроллеры нжмд. Структура управления
- •1.31. Архитектура и управления com-портом. Назначение регистров
- •1.32. Архитектура и управления lpt портом в режимах ecp epp
- •1.33. Архитектура scsi шины
- •1.34. Архитектура usb шины
- •2.1 Методы разделения каналов в многоканальных системах передачи данных
- •2.2 Превращение кодирования, модуляция. Назначение этих процессов при передаче данных. Теорема Котельникова (Найквиста)
- •2.3 Модуляция. Разновидности модуляции. Скорость манипуляции
- •2.4 Количество информации. Энтропия. Излишество
- •2.5 Классификация помех. Свойства флуктуационных помех. Сравнение методов манипуляции по помехоустойчивости
- •2.6 Амплитудная манипуляции. Модулятор и детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.7 Частотная манипуляция. Модулятор, детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.8 Фазовая манипуляция. Спектр сигнала и нужная полоса пропускания канала. Относительная фазовая манипуляция метода
- •2.9. Разновидности фазовой манипуляции: двфм, твфм, кам
- •2.10. Классификация систем передачи данных по борьбе с ошибками
- •2.11. Классификация погрешностных кодов. Выражения для расчета вероятности обнаружения ошибки для кодов с постоянным весом для кодов с контролем по паритету
- •2.12. Первичные коды и способы расширение кодировочной таблицы. Esc - последовательности принтеров
- •2.13. Причины использования модуляция при передачи данных. Разновидности модуляция и необходимые полосы пропускания линий связи
- •2.14. Геометрическая интерпретация сигналов и помех. Идеальный приемник Котельникова и другие варианты построение приёмников двоичных сигналов
- •2.15. Синхронизация в аппаратуре передачи данных и в устройствах считывания магнитных записей, способы кодирования, который повышают надежности синхронизации битов
- •2.16. Модемы как периферийные устройства. Система управления хейз. Модемы серия mnp. Особенности модемов классов mnp-5, 7,10. Команды модема
- •2.17. Методы магнитного записывания информации и их применение
- •2.18. Частотный и модифицированный частотный методы записи информации. Формат сектора на гибком диске. Способы позиционирования головок в дисковых устройствах магнитного записывания информации
- •1. Частотная модуляция.
- •2. Модифицированная частотная модуляция.
- •2.19 Элементы формата сектора, обеспечивающие битовую и байтовую синхронизацию при считывания информации с гибких дисков
- •2.20. Компьютерные сети. Классификация сетей. Общие характеристики глобальных, локальных, корпоративных сетей (отделов, кампусов, предприятий). Виртуальные частные сети (vpn - virtual private network)
- •2.22. Стандарт многоуровневого управления сетью (модель взаимодии открытых систем open system interconnection, osi). Понятие протокола, интерфейса, стек протоколов
- •2.24. Протоколы канального уровня: асинхронный, синхронный (символьно-ориентированные, бит-ориентированные). Протоколы с установкой соединение и без установки
- •Асинхронные протоколы
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Передача с установлением соединения и без установления соединения
- •2.25 Локальная сеть Ethernet. Топологии, стандарты, доступ к сети, структура кадров, расчет производительности, коллизии, домен коллизий и организация работы сети
- •Время двойного оборота и распознавание коллизий
- •Максимальная производительность сети Ethernet
- •Форматы кадров технологии Ethernet
- •Транспортные функции глобальной сети
- •Глобальные связи на основе сетей с коммутацией каналов
- •Типы адресов стека tcp/ip
- •Классы ip-адресов.
- •Отображение ip-адресов на локальные адреса
- •Отображение доменных имен на ip-адреса
- •Система доменных имен dns
- •2.28.Протокол ip и его функции. Структура ip-пакета и его параметры. Маршрутизация в ip-сетях. Фрагментация ip-пакетов. Сборка фрагментов.
- •Источники и типы записей в таблице маршрутизации:
- •Фрагментация ip-пакетов
- •2.29. Тенденции развития микропроцессорная техника. Структура и режимы функционирования современных микропроцессоров
- •2.30. На базі існуючих технічних рішень провести розробку структурної схеми мікропроцесора.
- •2.31. Сегментация памяти в защищенном режиме. Разработка дескрипторов сегментов формирование линейной адреса при обращении к памяти
- •Сегмент характеризуется такими параметрами:
- •Структура дескриптора сегмента:
- •2.32. Обработка прерываний в защищенном режиме. Виды исключений. Формирование дескриптивный таблице прерываний
- •Структура дескриптора idt:
- •2.33. Розробка обробників зовнішніх апаратних переривань, виключень та програмних переривань
- •2. 34 Защита памяти. Уровни привилегий. Особенности защиты сегментов данных, стеки, кода и устройств ввода / вывода
- •В микропроцессоре реализовано 4 уровня привилегий:
- •Правила зашиты памяти:
- •Правила доступа для шлюзов:
- •2.35. Аппаратные средства поддержки многозадачной работы микропроцессора. Структура таблици состояния задач. Алгоритмы и механизмы переключения задач
- •2.36.Алгоритмы и механизмы переключения задач
- •2.37. Страничная организация памяти. Разработка указателей таблиц и страниц. Формирования физического адреса для 4к-, 2м-и 4м-байтных страниц
- •3.1. Средства защиты носителей информации. Запись за пределами поля форматирования. Изменение длины сектора. Чередование секторов
- •Времянезависимые способы защиты от копирования Инженерные дорожки
- •Нестандартная длина сектора
- •Способы защиты, опирающиеся на временные параметры
- •Проверка чередования секторов на дорожке
- •Требования:
- •Принципы построения:
- •Защита информации на нжмд может осуществляться с помощью:
- •3.5. Процессы. Контекст процесса. Состояния процессов и переходы между ними. Системные вызовы для обеспечения жизненного цикла процесса
- •3.6. Управление памятью. Основные задачи. Модели памяти. Системные вызовы для работы с памятью
- •Распределение памяти разделами переменной величины(без использования внешней памяти).
- •Перемещаемые разделы(без использования внешней памяти).
- •Страничное распределение(с использованием внешней памяти).
- •Сегментное распределение(с использованием внешней памяти).
- •Странично-сегментное распределение(с использованием внешней памяти).
- •3.7. Ос. Состав ос. Требования к современных ос. Архитектурные направления построения ос
- •Монолитные системы
- •Многоуровневые системы
- •Модель клиент-сервер и микроядра
- •3.8. Монопольные ресурсы. Проблема тупиков. Дисциплины распределения ресурсов. Поиск тупиков и их уничтожение
- •3.9. Параллельное выполнение процессов. Формулировка задачи «производитель-потребитель» и методы ее решения
- •3.10. Средства взаимодействия процессов. Сравнительная характеристика базовых механизмов ipc
- •3.12 Субд. Основные функции. Виды субд
- •Основные функции субд
- •Управление транзакциями
- •Журнализация
- •Поддержка языков бд
- •3.13 Реляционные базы данных. Основные понятия, свойства отношений, модель данных, реляционные операции и вычисления. Базовые понятия реляционных баз данных
- •1. Тип данных
- •2. Домен
- •3. Схема отношения, схема базы данных
- •4. Кортеж, отношение
- •Фундаментальные свойства отношений
- •1.Отсутствие кортежей-дубликатов
- •2. Отсутствие упорядоченности кортежей
- •3. Отсутствие упорядоченности атрибутов
- •4. Атомарность значений атрибутов.
- •Реляционные операции и счисление.
- •3.14.Цветовые пространства rgb и cmyk. Сфера действия и и причины их различия. Получение цвета одного пространства через значение цветов другое
- •3.15 Получения в windows программах изображения примитивов. Точки
- •3.16 Провести сравнение технологий взаимодействия процессов в локальной сети. Почтовые ящики. Именованные каналы. Удаленного вызова процедур. Гнезда
- •3.17 Провести сравнение методов построения многоуровневых программных средств. Динамические библиотеки. Com и activex. Провайдеры. Службы. Драйвера
- •3.18 Общие требования и архитектуры интерфейса пользователя. Возможности, преимущества и недостатки диалоговых, однодокументным и многодокументным приложений
- •3. 19. Типы данных и структуры команд в мп Intel
- •3.20 Организация прерываний в пк. Приоритеты при обработке прерываний. Режимы работы и программирование
- •Типы прерываний.
- •3.21 Архитектура видеосистемы пк. Управления видеосистемой
- •3.22 Режимы видеосистемы. Структура видеопамяти
- •3.23 Логическая организация дисковых накопителей внешней памяти. Основные области (boot, fat, root, data area)
- •Структура boot области
- •3.24 Двоичная логика. Булевая функция одной и двух переменных. Количество булевых функций n-переменных. Суперпозиция булевых функций
- •3.25. Тестовая диагностика сетей пк. Утилиты ping: организация работы, типы сообщений. Объясните возможен пример работы утилиты
- •Технические характеристики системной платы
- •3.27. Видеосистема пк. Основные эксплуатационные характеристики. Получение информации про видеосистему пк и результатов тестирования с помощью программы класса checkit. Объяснить возможные результаты
- •3.28. Реализация анимации изображения в web-страницы с использованием дополнительных графических файлов и без них (только текст html-файл)
- •3.29. Цвет как средство управления психики и поведения человека. Реализация цветовой гармонии в графическом изображении
- •Пятие цветовой гармонии :
- •3.30. Спектральные характеристики человеческого глаза и причина использования rgb системы в мониторах. Технические и психофизиологические ограничения воспроизведение цвета
- •3.31 Реляционные базы данных. Транзакции и целостность баз данных. Изолированность пользователей. Журнал перемен
- •Транзакции и целостность баз данных
- •Журнализация изменений бд
- •3.32 Язык запросов sql. Команда select и структура запрос на выборку
- •Предложение select
- •3.33 Язык запросов sql. Работа с записями и таблиц. Добавление, удаление, модификация
- •3.34. Архитектуры построения систем клиент-сервер. Варианты построения серверной приложений. Варианты построения клиентская приложений
- •3.35. Драйверы. Назначение, структура. Механизм работы драйвера. Примеры драйверов
- •3.36. Управление процессорным временем. Модель планировщика и диспетчера процессорного времени. Приоритеты процессов
- •3.37. Управление процессорным временем. Вытесняющая и невитисняющая дисциплина планирования процессорного времени
Транспортные функции глобальной сети
В идеале глобальная вычислительная сеть должна передавать данные абонентов любых типов, которые есть на предприятии и нуждаются в удаленном обмене информацией. Для этого глобальная сеть должна предоставлять комплекс услуг: передачу пакетов локальных сетей, передачу пакетов мини-компьютеров и мейнфреймов, обмен факсами, передачу трафика офисных АТС, выход в городские, междугородные и международные телефонные сети, обмен видеоизображениями для организации видеоконференций, и т. д. и т. п. Сеть строится на основе некоммутируемых (выделенных) каналов связи, которые соединяют коммутаторы глобальной сети между собой. Коммутаторы называют также центрами коммутации пакетов (ЦКП), то есть они являются коммутаторами пакетов, которые в разных технологиях глобальных сетей могут иметь и другие названия - кадры, ячейки cell. В глобальной сети наличие большого количества абонентов с невысоким средним уровнем трафика весьма желательно - именно в этом случае начинают в наибольшей степени проявляться выгоды метода коммутации пакетов. Если же абонентов мало и каждый из них создает трафик большой интенсивности (по сравнению с возможностями каналов и коммутаторов сети), то равномерное распределение во времени пульсаций трафика становится маловероятным и для качественного обслуживания абонентов необходимо использовать сеть с низким коэффициентом нагрузки.
Глобальные связи на основе сетей с коммутацией каналов
Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов. ISDN - сети с интегральными услугами ISDN (Integrated Services Digital Network - цифровые сети с интегральными услугами) относятся к сетям, в которых основным режимом коммутации является режим коммутации каналов, а данные обрабатываются в цифровой форме. Архитектура сети ISDN предусматривает несколько видов служб (рис. 6.16): Одним из базовых принципов ISDN является предоставление пользователю стандартного интерфейса, с помощью которого пользователь может запрашивать у сети разнообразные услуги. Пользовательский интерфейс основан на каналах трех типов: - В-со скоростью передачи данных 64 Кбит/с; - D - со скоростью передачи данных 16 или 64 Кбит/с; - Н - 384 Кбит/с (НО),1536 Кбит/с (НИ) или 1920 Кбит/с (Н12). Сеть ISDN поддерживает два типа пользовательского интерфейса - начальный (Basic Rate Interface, BRI) и основной (Primay Rate Interface, PRI).Основное назначение ISDN - это передача телефонного трафика. Поэтому за основу адреса ISDN был взят формат международного телефонного плана номеров, описанный в стандарте ITU-T E.163. Однако этот формат был расширен для поддержки большего числа абонентов и для использования в нем адресов других сетей, например Х.25. Стандарт адресации в сетях ISDN получил номер Е.164. В сети ISDN существуют два стека протоколов: стек каналов типа D и стек каналов типа В. Каналы типа D образуют достаточно традиционную сеть с коммутацией пакетов. Каналы типа В образуют сеть с коммутацией цифровых каналов. Компьютерные глобальные сети с коммутацией пакетов Назначение и структура сетей Х.25 Сети Х.25 являются на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сети Х.25 хорошо работают на ненадежных линиях благодаря протоколам с установлением соединения и коррекцией ошибок на двух уровнях - канальном и сетевом. ехнология сетей Х.25 имеет несколько существенных признаков, отличающих ее от других технологий. - Наличие в структуре сети специального устройства - PAD (Packet Assembler Disassembler), предназначенного для выполнения операции сборки нескольких низкоскоростных потоков байт от алфавитно-цифровых терминалов в пакеты, передаваемые по сети и направляемые компьютерам для обработки. Эти устройства имеют также русскоязычное название «Сборщик-разборщик пакетов», СРП. Наличие трехуровневого стека протоколов с использованием на канальном и сетевом уровнях протоколов с установлением соединения, управляющих потоками данных и исправляющих ошибки. - Ориентация на однородные стеки транспортных протоколов во всех узлах сети - сетевой уровень рассчитан на работу только с одним протоколом канального уровня и не может подобно протоколу IP объединять разнородные сети. Сеть Х.25 состоит из коммутаторов (Switches, S), называемых также центрами коммутации пакетов (ЦКП), расположенных в различных географических точках и соединенных высокоскоростными выделенными каналами. Выделенные каналы могут быть как цифровыми, так и аналоговыми. Сети Frame Relay. Сети frame relay - сравнительно новые сети, которые гораздо лучше подходят для передачи пульсирующего трафика локальных сетей по сравнению с сетями Х.25, правда, это преимущество проявляется только тогда, когда каналы связи приближаются по качеству к каналам локальных сетей, а для глобальных каналов такое качество обычно достижимо только при использовании волоконно-оптических кабелей. Преимущество сетей frame relay заключается в их низкой протокольной избыточности и дейтаграммном режиме работы, что обеспечивает высокую пропускную способность и небольшие задержки кадров. Надежную передачу кадров технология frame relay не обеспечивает. Сети frame relay специально разрабатывались как общественные сети для соединения частных локальных сетей. Они обеспечивают скорость передачи данных до 2 Мбит/с.Особенностью технологии frame relay является гарантированная поддержка основных показателей качества транспортного обслуживания локальных сетей - средней скорости передачи данных по виртуальному каналу при допустимых пульсациях трафика. Технология frame relay в сетях ISDN стандартизована как служба. Технология frame relay использует для передачи данных технику виртуальных соединений, аналогичную той, которая применялась в сетях Х.25, однако стек протоколов frame relay передает кадры (при установленном виртуальном соединении) по протоколам только физического и канального уровней, в то время как в сетях Х.25 и после установления соединения пользовательские данные передаются протоколом 3-го уровня. Кроме того, протокол канального уровня LAP-F в сетях frame relay имеет два режима работы - основной (core) и управляющий (control). Технология АТМ. Гетерогенность - неотъемлемое качество любой крупной вычислительной сети, и на согласование разнородных компонентов системные интеграторы и администраторы тратят большую часть своего времени. Поэтому любое средство, сулящее перспективу уменьшения неоднородности сети, привлекает пристальный интерес сетевых специалистов. Технология асинхронного режима передачи (Asynchronous Transfer Mode, АТМ) разработана как единый универсальный транспорт для нового поколения сетей с интеграцией услуг, которые называются широкополосными сетями ISDN (Broadband-ISDN, B-ISDN). Технология АТМ совмещает в себе подходы двух технологий - коммутации пакетов и коммутации каналов. От первой она взяла на вооружение передачу данных в виде адресуемых пакетов, а от второй - использование пакетов небольшого фиксированного размера, в результате чего задержки в сети становятся более предсказуемыми. Основные принципы технологии АТМ. Сеть АТМ имеет классическую структуру крупной территориальной сети - конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые в свою очередь соединяются с коммутаторами более высоких уровней. Коммутаторы АТМ пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов. Для частных сетей АТМ определен протокол маршрутизации PNNI (Private NNI), с помощью которого коммутаторы могут строить таблицы маршрутизации автоматически.Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Виртуальные соединения могут быть постоянными и коммутируемыми. Стандарт АТМ не вводит свои спецификации на реализацию физического уровня. Здесь он основывается на технологии SDH/SONET, принимая ее иерархию скоростей.
2.27. Адресация в IP-сетях. Типы адресов. Записи адресов. Классы адресов и применения масок. Отображение IP-адресов на локальные адреса (протокол разрешения адресов - Addres Resolution Protocol, ARP). Домены и доменные имена (Domain Name System, DNS).
2.27. Адресація в IP-мережах. Типи адрес. Записи адрес. Класи адрес та застосування масок. Відображення IP-адрес на локальні адреси (протокол дозволу адрес – Addres Resolution Protocol, ARP). Домени та доменні імена (Domain Name System, DNS).