
- •1.1 Логические элементы ттл / ттлш: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.2 Логические элементы с тремя состояниями выхода. Принцип действия. Упорядочение работы нескольких элементов на одну общую линию интерфейса (магистральные интерфейсы)
- •1.3 Логические элементы мот / кмоп: Базовые логические элементы. Анализ амплитудно-передаточных (амплитудное или статической) характеристики. Статические и динамические параметры.
- •1.4 Триггеры: классификация и краткая характеристика различных типов триггеров. Особенности Схемотехнические реализации и работа.
- •1.5 Регистры: назначение и классификация. Параллельные и последовательный регистр. Особенности Схемотехнические реализации и работа.
- •Классификация:
- •1.6 Счетчики: назначение и классификация. Асинхронных счетчики. Особенности Схемотехнические реализации и работа.
- •1.7. Синхронное счетчики: особенности Схемотехнические реализации и работа.
- •1.8. Дешифратор: определение, классификация, способы построения и функционирования. Линейные или одноступенчатый дешифратор.
- •1.9 Шифратор. Определение, принципы построения и особенности функционирования. Клавиатурные, приоритетные Шифратор, кодоперетворювачи.
- •1.10. Мультиплексор: определение, принципы построения и функционирования.
- •1.11. Демультиплексор: определение, принципы построения и функционирования.
- •1.12. Сумматоры комбинационного типа: назначение, классификация и принципы построения.
- •1.13. Накапливающие сумматоры. Особенности их функционирования.
- •1.14 Моделирование Аналоговых или цифровых схем с помощью пакетов ewb и micro-cap: последовательность действий при моделировании. Получение и оформления результатов.
- •Мультиметр
- •Генератор слов
- •Логический анализатор
- •Логический преобразователь
- •Осциллограф
- •Разработка схем цифровых устройств
- •5.1. Вывод элементов схем на рабочую поверхность
- •Монтаж схем
- •1.16 Основные функции алгебры логики и логические элементы для их реализации. Законы алгебры логики.
- •1.17 Синтез Логическая схема в базисе (и, или, не), и-не, или-не.
- •1.18 Типы данных и структуры управления в мп intel (на примере 486)
- •1.19. Архитектура системного интерфейса современных пк. Назначение компонентов. Режимы передачи информации по системными шинами.
- •1.20. Распределение системных ресурсов между компонентов пк. Технология PnP и ее реализация в шинах pci и isa / eisa.
- •1.21. Средства кэширования мп. Назначение и характеристики. Типы кэш-памяти. Режимы работы при чтении / записи информации
- •1.22. Назначение и организация системной памяти. Физическая организация микросхем пзу, статические и динамические озу. Типы динамической памяти (fpm, edo, bedo, sdram)
- •1.23. Архитектура и принцип работы часов реального времени rtc и cmos памяти. Возможности программирования
- •1.24. Архитектура системного таймера и назначения каналов таймера. Режимы работы каналов таймера. Возможности программирования
- •1.25. Архитектура и организация подсистемы dma (кпдп) в пк. Управляющая информация и программирование
- •1.26. Организация прерываний в пк, приоритеты при обработке прерываний. Режимы работы и программирование
- •1.27. Архитектура и принцип работы подсистемы клавиатуры. Назначение компонентов и возможности программирования
- •1.28. Архитектура видеосистемы пк. Управления видеосистемой. Режимы. Структура видеопамяти
- •1.29. Логическая организация дисковый накопитель внешней памяти. Основные области (boot, fat, root, data area)
- •1.30. Архитектура и управления контроллеры нжмд. Структура управления
- •1.31. Архитектура и управления com-портом. Назначение регистров
- •1.32. Архитектура и управления lpt портом в режимах ecp epp
- •1.33. Архитектура scsi шины
- •1.34. Архитектура usb шины
- •2.1 Методы разделения каналов в многоканальных системах передачи данных
- •2.2 Превращение кодирования, модуляция. Назначение этих процессов при передаче данных. Теорема Котельникова (Найквиста)
- •2.3 Модуляция. Разновидности модуляции. Скорость манипуляции
- •2.4 Количество информации. Энтропия. Излишество
- •2.5 Классификация помех. Свойства флуктуационных помех. Сравнение методов манипуляции по помехоустойчивости
- •2.6 Амплитудная манипуляции. Модулятор и детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.7 Частотная манипуляция. Модулятор, детектор. Спектр сигнала и нужная полоса пропускания канала
- •2.8 Фазовая манипуляция. Спектр сигнала и нужная полоса пропускания канала. Относительная фазовая манипуляция метода
- •2.9. Разновидности фазовой манипуляции: двфм, твфм, кам
- •2.10. Классификация систем передачи данных по борьбе с ошибками
- •2.11. Классификация погрешностных кодов. Выражения для расчета вероятности обнаружения ошибки для кодов с постоянным весом для кодов с контролем по паритету
- •2.12. Первичные коды и способы расширение кодировочной таблицы. Esc - последовательности принтеров
- •2.13. Причины использования модуляция при передачи данных. Разновидности модуляция и необходимые полосы пропускания линий связи
- •2.14. Геометрическая интерпретация сигналов и помех. Идеальный приемник Котельникова и другие варианты построение приёмников двоичных сигналов
- •2.15. Синхронизация в аппаратуре передачи данных и в устройствах считывания магнитных записей, способы кодирования, который повышают надежности синхронизации битов
- •2.16. Модемы как периферийные устройства. Система управления хейз. Модемы серия mnp. Особенности модемов классов mnp-5, 7,10. Команды модема
- •2.17. Методы магнитного записывания информации и их применение
- •2.18. Частотный и модифицированный частотный методы записи информации. Формат сектора на гибком диске. Способы позиционирования головок в дисковых устройствах магнитного записывания информации
- •1. Частотная модуляция.
- •2. Модифицированная частотная модуляция.
- •2.19 Элементы формата сектора, обеспечивающие битовую и байтовую синхронизацию при считывания информации с гибких дисков
- •2.20. Компьютерные сети. Классификация сетей. Общие характеристики глобальных, локальных, корпоративных сетей (отделов, кампусов, предприятий). Виртуальные частные сети (vpn - virtual private network)
- •2.22. Стандарт многоуровневого управления сетью (модель взаимодии открытых систем open system interconnection, osi). Понятие протокола, интерфейса, стек протоколов
- •2.24. Протоколы канального уровня: асинхронный, синхронный (символьно-ориентированные, бит-ориентированные). Протоколы с установкой соединение и без установки
- •Асинхронные протоколы
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Передача с установлением соединения и без установления соединения
- •2.25 Локальная сеть Ethernet. Топологии, стандарты, доступ к сети, структура кадров, расчет производительности, коллизии, домен коллизий и организация работы сети
- •Время двойного оборота и распознавание коллизий
- •Максимальная производительность сети Ethernet
- •Форматы кадров технологии Ethernet
- •Транспортные функции глобальной сети
- •Глобальные связи на основе сетей с коммутацией каналов
- •Типы адресов стека tcp/ip
- •Классы ip-адресов.
- •Отображение ip-адресов на локальные адреса
- •Отображение доменных имен на ip-адреса
- •Система доменных имен dns
- •2.28.Протокол ip и его функции. Структура ip-пакета и его параметры. Маршрутизация в ip-сетях. Фрагментация ip-пакетов. Сборка фрагментов.
- •Источники и типы записей в таблице маршрутизации:
- •Фрагментация ip-пакетов
- •2.29. Тенденции развития микропроцессорная техника. Структура и режимы функционирования современных микропроцессоров
- •2.30. На базі існуючих технічних рішень провести розробку структурної схеми мікропроцесора.
- •2.31. Сегментация памяти в защищенном режиме. Разработка дескрипторов сегментов формирование линейной адреса при обращении к памяти
- •Сегмент характеризуется такими параметрами:
- •Структура дескриптора сегмента:
- •2.32. Обработка прерываний в защищенном режиме. Виды исключений. Формирование дескриптивный таблице прерываний
- •Структура дескриптора idt:
- •2.33. Розробка обробників зовнішніх апаратних переривань, виключень та програмних переривань
- •2. 34 Защита памяти. Уровни привилегий. Особенности защиты сегментов данных, стеки, кода и устройств ввода / вывода
- •В микропроцессоре реализовано 4 уровня привилегий:
- •Правила зашиты памяти:
- •Правила доступа для шлюзов:
- •2.35. Аппаратные средства поддержки многозадачной работы микропроцессора. Структура таблици состояния задач. Алгоритмы и механизмы переключения задач
- •2.36.Алгоритмы и механизмы переключения задач
- •2.37. Страничная организация памяти. Разработка указателей таблиц и страниц. Формирования физического адреса для 4к-, 2м-и 4м-байтных страниц
- •3.1. Средства защиты носителей информации. Запись за пределами поля форматирования. Изменение длины сектора. Чередование секторов
- •Времянезависимые способы защиты от копирования Инженерные дорожки
- •Нестандартная длина сектора
- •Способы защиты, опирающиеся на временные параметры
- •Проверка чередования секторов на дорожке
- •Требования:
- •Принципы построения:
- •Защита информации на нжмд может осуществляться с помощью:
- •3.5. Процессы. Контекст процесса. Состояния процессов и переходы между ними. Системные вызовы для обеспечения жизненного цикла процесса
- •3.6. Управление памятью. Основные задачи. Модели памяти. Системные вызовы для работы с памятью
- •Распределение памяти разделами переменной величины(без использования внешней памяти).
- •Перемещаемые разделы(без использования внешней памяти).
- •Страничное распределение(с использованием внешней памяти).
- •Сегментное распределение(с использованием внешней памяти).
- •Странично-сегментное распределение(с использованием внешней памяти).
- •3.7. Ос. Состав ос. Требования к современных ос. Архитектурные направления построения ос
- •Монолитные системы
- •Многоуровневые системы
- •Модель клиент-сервер и микроядра
- •3.8. Монопольные ресурсы. Проблема тупиков. Дисциплины распределения ресурсов. Поиск тупиков и их уничтожение
- •3.9. Параллельное выполнение процессов. Формулировка задачи «производитель-потребитель» и методы ее решения
- •3.10. Средства взаимодействия процессов. Сравнительная характеристика базовых механизмов ipc
- •3.12 Субд. Основные функции. Виды субд
- •Основные функции субд
- •Управление транзакциями
- •Журнализация
- •Поддержка языков бд
- •3.13 Реляционные базы данных. Основные понятия, свойства отношений, модель данных, реляционные операции и вычисления. Базовые понятия реляционных баз данных
- •1. Тип данных
- •2. Домен
- •3. Схема отношения, схема базы данных
- •4. Кортеж, отношение
- •Фундаментальные свойства отношений
- •1.Отсутствие кортежей-дубликатов
- •2. Отсутствие упорядоченности кортежей
- •3. Отсутствие упорядоченности атрибутов
- •4. Атомарность значений атрибутов.
- •Реляционные операции и счисление.
- •3.14.Цветовые пространства rgb и cmyk. Сфера действия и и причины их различия. Получение цвета одного пространства через значение цветов другое
- •3.15 Получения в windows программах изображения примитивов. Точки
- •3.16 Провести сравнение технологий взаимодействия процессов в локальной сети. Почтовые ящики. Именованные каналы. Удаленного вызова процедур. Гнезда
- •3.17 Провести сравнение методов построения многоуровневых программных средств. Динамические библиотеки. Com и activex. Провайдеры. Службы. Драйвера
- •3.18 Общие требования и архитектуры интерфейса пользователя. Возможности, преимущества и недостатки диалоговых, однодокументным и многодокументным приложений
- •3. 19. Типы данных и структуры команд в мп Intel
- •3.20 Организация прерываний в пк. Приоритеты при обработке прерываний. Режимы работы и программирование
- •Типы прерываний.
- •3.21 Архитектура видеосистемы пк. Управления видеосистемой
- •3.22 Режимы видеосистемы. Структура видеопамяти
- •3.23 Логическая организация дисковых накопителей внешней памяти. Основные области (boot, fat, root, data area)
- •Структура boot области
- •3.24 Двоичная логика. Булевая функция одной и двух переменных. Количество булевых функций n-переменных. Суперпозиция булевых функций
- •3.25. Тестовая диагностика сетей пк. Утилиты ping: организация работы, типы сообщений. Объясните возможен пример работы утилиты
- •Технические характеристики системной платы
- •3.27. Видеосистема пк. Основные эксплуатационные характеристики. Получение информации про видеосистему пк и результатов тестирования с помощью программы класса checkit. Объяснить возможные результаты
- •3.28. Реализация анимации изображения в web-страницы с использованием дополнительных графических файлов и без них (только текст html-файл)
- •3.29. Цвет как средство управления психики и поведения человека. Реализация цветовой гармонии в графическом изображении
- •Пятие цветовой гармонии :
- •3.30. Спектральные характеристики человеческого глаза и причина использования rgb системы в мониторах. Технические и психофизиологические ограничения воспроизведение цвета
- •3.31 Реляционные базы данных. Транзакции и целостность баз данных. Изолированность пользователей. Журнал перемен
- •Транзакции и целостность баз данных
- •Журнализация изменений бд
- •3.32 Язык запросов sql. Команда select и структура запрос на выборку
- •Предложение select
- •3.33 Язык запросов sql. Работа с записями и таблиц. Добавление, удаление, модификация
- •3.34. Архитектуры построения систем клиент-сервер. Варианты построения серверной приложений. Варианты построения клиентская приложений
- •3.35. Драйверы. Назначение, структура. Механизм работы драйвера. Примеры драйверов
- •3.36. Управление процессорным временем. Модель планировщика и диспетчера процессорного времени. Приоритеты процессов
- •3.37. Управление процессорным временем. Вытесняющая и невитисняющая дисциплина планирования процессорного времени
1.28. Архитектура видеосистемы пк. Управления видеосистемой. Режимы. Структура видеопамяти
1.28. АРХІТЕКТУРА ВІДЕОСИСТЕМИ ПК. УПРАВЛІННЯ ВІДЕОСИСТЕМОЮ. РЕЖИМИ. СТРУКТУРА ВІДЕОПАМ'ЯТІ.
Видеосистема персональных компьютеров - основное средство отображения информации, обладают широкими возможностями программирования и наиболее привлекательные для программистов. Управление видеосистемой (формирование текстовых и графических изображений ) возможно путем использования широкого спектра графических пакетов и текстовых редакторов, встроенных графических библиотек, которые имеются практически во всех языках программирования, с использованием функций прерываний BIOS (10h прерывание) и путем непосредственного программирования видеоадаптеров на уровне портов и и непосредственного обращения к видеобуферу.
В IBM PC подобных компьютерах видеосистема состоит из следующих основных модулей: дисплей, видеоадаптер (программирование всей видеосистемы заключается в программировании видеоадаптера); видеопамять (видеобуфер) - оперативная память, физически расположена на плате видеоадаптера и предназначена для хранения выводимой информации текста или графического изображения на экран монитора. Видеопамять представляет собой двухвходовую ОЗУ, т.е. с одной стороны она находится в адресном пространстве процессора и допускает чтение/запись данных от процессора, а с другой стороны схемы видеоадаптера считывают из нее информацию в процессе формирования изображения; внутреннее ПЗУ (ROM BIOS) видеоадаптера, которое физически расположено на плате адаптера и содержит программы поддержки расширенных функций 10h прерывания BIOS системной платы.
Во всех видеомониторах персональных компьютеров используется растровый принцип формирования изображения, при которых текст или графическое изображение формируются на экране электронным лучом, который периодически сканирует экран монитора слева направо и сверху вниз с образованием на нем линий развертки, которые последовательно (сверху вниз) заполняют весь экран. В цветных видеомониторах луч состоит из трех лучей, которые с помощью специальных масок формируют три основных цвета: синий (Blue), зеленый (Green) и красный (Red). Изменяя интенсивность каждой составляющей, получают все разнообразие цветовой гаммы. При формировании растра выводимое из видеобуфера изображение занимает не весь растр, а его центральную часть, окруженную горизонтальным (а) и вертикальным (б) окаймлением (бордюром). Для формирования указанного изображения применяются сигналы: горизонтальное гашение (HBI); горизонтальная синхронизация (HSYNC); вертикальное гашение (VBI); вертикальная синхронизация (VSYNC); В текстовых режимах устанавливается следующее соответствие между памятью видеоконтроллера и изображением на экране: в начале памяти записываются данные о символе, находящемся на первой строке в левом углу, затем данные об остальных символах первой строки, затем данные о символах второй строки начиная слева и т. д. При выводе текста различные видеосистемы работают одинаково. Для экрана отводится 4000 байт, так что на каждую из 2000 позиций экрана (25 строк x 80 символов) приходится 2 байта . Первый байт содержит код ASCII символа. Аппаратура дисплея преобразует номер кода ASCII в связанный с ним символ и посылает его изображение на экран. Второй байт (байт атрибутов) содержит информацию о том, как должен быть выведен данный символ.
В графическом режиме цветовое значение каждого пикселя хранится как один или несколько бит в видеобуфере и считывается (переносится) на экран, возможно, с дополнительным табличным преобразованием. Так как каждый пиксель на экране можно адресовать через видеобуфер, графический режим часто называется режимом с адресацией всех точек (All Points Addressable - АРА). Если в видеобуфере пиксель кодируется n битами, одновременно на экране можно наблюдать цветов. С помощью специальных схем n-битный код расширяется до m бит, причем m>n.
Поскольку все видеосистемы, кроме монохромного дисплея, имеют достаточно памяти для нескольких видеобуферов, одновременно могут быть сконструированы несколько экранов, каждый из которых может быть выведен в нужный момент. Вместо того чтобы передвигать данные в видеопамяти, монитор посылает данные из другой области видеопамяти. Число доступных страниц может меняться в зависимости от видеосистемы и режима дисплея. В режимах 0-3 и 7 имеется 8 страниц. BIOS хранит в своей области данных однобайтовую переменную ACT_PAGE, указывающую, какая из страниц выводится в данный момент. Диапазон значений этой переменной от 0 до 7. Она расположена по адресу 0040:0062h. Дисплейные страницы выбираются за счет изменения точки видеопамяти, начиная с которой монитор принимает данные. Эта точка памяти устанавливается регистрами 0Ch (старший байт) и 0Dh (младший байт), которые называются регистрами стартового адреса. Для программирования регистров стартового адреса необходимо записать номер регистра в адресный регистр блока (послать номер в порт 3D4,после чего записать данные в порт 3D5).