
- •1. Предмет и методы полевой геофизики
- •2. Гравиразведка
- •2.1. Сила притяжения и ее потенциал
- •2.2. Сила тяжести на поверхности Земли
- •Практическое задание № 1
- •2.3. Вторые производные потенциала силы тяжести и их физический смысл
- •Единицы измерения в гравиразведке
- •2.4. Изменение силы тяжести внутри Земли
- •2.5. Изменения гравитационного поля во времени
- •2.6. Нормальное поле силы тяжести
- •Нормальные значения вторых производных потенциала.
- •2.7. Методы измерений ускорения силы тяжести и устройство гравиметров
- •2.7.1. Классификация методов измерений
- •2.7.2. Динамические методы измерений силы тяжести
- •2.7.3. Статические методы измерений силы тяжести
- •Общее устройство кварцевых астазированных гравиметров.
- •Чувствительная система гравиметра.
- •Подготовка гравиметров к работе
- •2.8. Методика гравиметрической съемки
- •2.8.1. Общие положения
- •2.8.2. Опорная сеть
- •2.8.3. Рядовая сеть
- •2.8.4. Методика топо-геодезического обеспечения гравиметрических работ
- •2.9. Камеральная обработка данных съемки
- •2.9.1. Первичная обработка данных
- •9.2.2. Окончательная обработка
- •1. Поправка за высоту точки стояния прибора.
- •3. Поправка за влияние окружающего рельефа
- •2.10. Решение прямой и обратной задач гравиразведки
- •2.10.1. Способы решения прямой задачи.
- •2.10.2. Способы решения обратной задачи.
- •Практическое задание № 3
- •2.10.3. Построение контактной поверхности
- •Практическое задание № 4
- •Контрольные вопросы
- •3. Магниторазведка
- •3.1. Магнитное поле земли
- •3.1.1. Дипольное поле Земли и элементы вектора геомагнитного поля
- •3.1.2. Магнитосфера и радиационные пояса Земли
- •3.1.3. Структура геомагнитного поля
- •3.1.4. Вариации геомагнитного поля
- •3.1.5. Нормальное магнитное поле
- •3.1.6. Генеральная магнитная съемка и магнитные карты
- •Практическое задание № 5
- •3.1.7. Природа магнитного поля Земли
- •3.1.8. Элементы вектора Та
- •3.1.10. Условия и область применения магниторазведки
- •3.2. Магнетизм горных пород
- •3.2.1. Магнитные свойства минералов
- •3.2.2. Магнитные свойства горных пород
- •3.2.3. Палеомагнетизм и археомагнетизм
- •3.3. Способы измерения магнитногополя
- •3.3.1. Классификация способов измерений магнитного поля
- •3.3.2. Оптико-механические магнитометры.
- •3.3.3. Феррозондовые магнитометры.
- •Протонные магнитометры.
- •Квантовые магнитометры.
- •3.3.6. Индукционные и криогенные магнитометры.
- •3.4. Методика полевых работ и обработка полевых данных
- •3.4.1. Методика полевых магнитных съемок
- •3.4.2. Обработка данных магнитной съемки
- •3.5. Различие и взаимосвязь гравитационных и магнитных аномалий
- •3.5.1. Особенности гравитационных и магнитных аномалий
- •3.5.2. Определение величины и направления вектора намагничения геологических тел по наблюденным гравимагнитным аномалиям
- •Практическое задание № 6
- •Контрольные вопросы
- •4. Электрические методы разведки
- •4.1. Физико-геологические основы и классификация методов электроразведки
- •Метод сопротивлений
- •4.2.1. Нормальные поля точечных и дипольных источников
- •4.2.2. Электрическое профилирование (эп).
- •Над вертикальным пластом. Установка (в см) а2в6m2n.
- •4.2.3.Вертикальные электрические зондирования
- •Практическое задание № 7
- •Факторы, определяющие электрические свойства горных пород
- •Методы электрохимической поляризации
- •Метод естественного электрического поля
- •- Медный стержень; 2 – пробка; 3 – резиновая прокладка; 4 – пластмассовый корпус; 5 – пористый сосуд.
- •Практическое задание № 8
- •4.3.2. Метод вызванной поляризации
- •Электромагнитные и магнитотеллурические методы
- •Общие принципы электромагнитных зондирований.
- •Дистанционные и частотные зондирования
- •Магнитотеллурическое зондирование
- •Контрольные вопросы.
- •5.1.2. Устойчивое и подвижное радиоактивное равновесие
- •5.1.3. Единицы измерения радиоактивных величин.
- •5.2. Способы регистрации радиоактивных излучений
- •5.2.1. Газонаполненные детекторы излучения
- •5.2.2. Сцинтилляционные счетчики
- •5.2.3. Полупроводниковые счетчики
- •5.3. Основы полевой гамма-спектрометрии
- •5.3.1. Принцип раздельного определения u(Rа), Тh, к.
- •5.3.2. Факторы, влияющие на результаты γ-спектрометрии
- •5.3.3. Обработка и интерпретация материалов аэрогамма-съемки
- •5.3.4. Характеристика аэрогамма-спектральных аномалий
- •Контрольные вопросы.
- •6. ТерМические методы разведки
- •6.1. Физико-геологические основы терморазведки
- •6.1.1. Тепловые и оптические свойства горных пород.
- •6.1.2. Принципы теории терморазведки
- •6.1.3. Тепловое поле Земли
- •6.2. Аппаратура для геотермических исследований
- •6.3. Методика работ и области применения терморазведки
- •Контрольные вопросы
- •7. Возможности методов полевой геофизики при поисках нефтегазовых месторождений
- •7.1. Применение гравиразведки
- •1.Локальные структуры тектонического типа.
- •2.Локальные структуры аккумулятивного типа
- •7.2. Применение магниторазведки
- •7.2.1. Отражение месторождений углеводородов в региональном магнитом поле
- •7.2.2. Возможности магниторазведки при поисках залежей углеводородов.
- •Применение электроразведки для поисков нефтеперспективных объектов
- •7.3.1. Геоэлектрическая модель залежи углеводородов
- •7.3.2. Применение методов электроразведки для поисков нефтегазовых структур
- •Комплексирование методов полевой геофизики для поисков нефтеперспективных объектов
- •7.4.1. Физико-геологические модели залежей углеводородов
- •7.4.2. Комплексирование геофизических методов при нефтегазопоисковых работах.
- •Практическое задание № 9
- •Справочные сведения к выполнению работы.
- •4. Контрольные вопросы.
- •Литература
Электромагнитные и магнитотеллурические методы
Общие принципы электромагнитных зондирований.
Под электромагнитными зондированиями понимают способы электроразведки искусственно создаваемыми электромагнитными полями, предназначенные для исследования геоэлектрических разрезов в вертикальном направлении. Источником поля при этом могут служить переменные электрические или магнитные диполи.
Плоская электромагнитная волна характеризуется длиной λ, которая связана с фазовой скоростью Vф и с периодом колебаний Т = 2π/ω = 1/f соотношениями:
λ = Vф·Т = ω/af = 2π/a, (4.36)
где величина а называется фазовым коэффициентом, определяющим скорость распространения некоторой фазовой поверхности волны вдоль вертикальной оси z, т.е. фазовую скорость.
Интенсивность поглощения электромагнитной волны проводящей средой принято характеризовать глубиной проникновения поля или толщиной скин-слоя - расстоянием, на котором поле из-за поглощения ослабляется в е раз. Эту величину принято обозначать δ:
,
(4.37)
Где ω = 2πf – круговая частота поля, γ- удельная проводимость среды, ε и μ – соответственно диэлектрическая и магнитная проницаемости среды. Коэффициент b называется коэффициентом поглощения среды. Из выражения (4.37) следует, что b возрастает с ростом частоты поля и проводимости среды γ за счет увеличения потерь энергии волны на нагревание среды.
Наряду с толщиной скин-слоя в электроразведке иногда используют понятие эффективная глубина проникновения поля hэф. , которая определяется следующим образом:
.
(4.38)
Для реальных параметров горных пород и руд в диапазоне частот, используемых в электроразведке (за исключением радиоволновых методов) γ >> ωε, поэтому токи проводимости много больше токов смещения и выражения для толщины скин-слоя δ, фазовой скорости Vф и длины волны λ приобретают вид:
,
,
(4.39)
.
Имеются два способа выполнения электромагнитного зондирования с переменными диполями.
Первый способ заключается в том, что в некоторой фиксированной точке пространства изучают зависимость поля диполя от характера изменения поля во времени. Простейший пример — частотное зондирование (ЧЗ), при котором изучается зависимость электромагнитного поля диполя от его частоты при постоянном расстоянии между дипольным источником поля и точкой наблюдения. Физической основой частотного зондирования является скин-эффект — зависимость глубины проникновения поля в землю от его частоты.
Изменяя частоту тока, питающего электрический или магнитный диполи, можно управлять глубиной проникновения поля и таким образом получать сведения об изменении геоэлектрического разреза в вертикальном направлении. В данном случае изменение частоты приводит к такому же эффекту, как и изменение разноса АВ в зондированиях постоянными полями (ВЭЗ или ДЭЗ).
Другим (и в настоящее время более распространенным) вариантом первого способа является зондирование становлением поля (ЗС), при котором изучается поле электрического или магнитного диполя при ступенчатом изменении питающего тока в нем. При этом в проводящих областях геоэлектрического разреза индуцируются вторичные токи, распределенные в первый момент в поверхностных частях разреза и стремящиеся в соответствии с законом индукции сохранить постоянным первичное поле. Со временем вторичные токи начинают перераспределяться, проникая в глубь разреза, и одновременно затухать вследствие тепловых потерь. Зависимость глубины проникновения вторичного поля от времени в нестационарном поле обусловливает возможность осуществления ЗС на основе изучения зависимости компонент электромагнитного поля от времени, прошедшего с момента выключения тока в источнике первичного поля.
Второй способ электромагнитного зондирования геоэлектрического разреза заключается в исследовании зависимости электромагнитного поля от расстояния между источником поля и точкой наблюдения. Зондирования такого типа принято называть геометрическими или дистанционными Частный случай таких зондирований — зондирования постоянными полями (ВЭЗ, ДЭЗ). Электромагнитное поле в точке наблюдения складывается из первичного поля источника и вторичных полей, создаваемых зарядами, существующими на поверхностях раздела сред с различными удельными сопротивлениями, и вихревыми токами, индуцированными в проводящих областях геоэлектрического разреза. В точках, расположенных близко к источнику, первичное поле, не несущее информации о характере разреза, существенно превышает вторичное, и таким образом глубинность исследования оказывается малой. По мере удаления точки наблюдения от источника возрастает относительная роль вторичного поля и тех источников, которые располагаются на больших глубинах. Соответственно повышается глубинность исследования.
Вместе с ЧЗ этот тип зондирований иногда объединяют в метод зондирования гармоническим электромагнитным полем (ЗГЭМП).
Выбор того или иного способа зондирований определяется решаемой геологической задачей. Первый способ (ЧЗ или ЗС) применяется преимущественно при детальных поисках структур, благоприятных для нефтегазонакопления, особенно в районах с неблагоприятными сейсмогеологическими условиями и при наличии в надопорных отложениях высокоомных экранирующих горизонтов, исключающих возможность применения зондирования постоянными полями.
Реже такие электромагнитные зондирования применяют для решения инженерно-геологических задач, а также для поисков водоносных структур, при изучении структуры рудных полей.
В последних случаях предпочтение обычно отдается дистанционным электромагнитным зондированиям, хотя может использоваться и комбинация этих двух способов (т. е. изменяют как частоту, так и разнос).
Электромагнитные зондирования выгодно отличаются от ВЭЗ и ДЭЗ такими возможностями, как изучение разрезов с высокоомными экранами и бесконтактные измерения. Кроме того, в ЧЗ и ЗС в процессе зондирования не приходится перемещать источник и приемник поля, так как разнос постоянен.