
- •1. Предмет и методы полевой геофизики
- •2. Гравиразведка
- •2.1. Сила притяжения и ее потенциал
- •2.2. Сила тяжести на поверхности Земли
- •Практическое задание № 1
- •2.3. Вторые производные потенциала силы тяжести и их физический смысл
- •Единицы измерения в гравиразведке
- •2.4. Изменение силы тяжести внутри Земли
- •2.5. Изменения гравитационного поля во времени
- •2.6. Нормальное поле силы тяжести
- •Нормальные значения вторых производных потенциала.
- •2.7. Методы измерений ускорения силы тяжести и устройство гравиметров
- •2.7.1. Классификация методов измерений
- •2.7.2. Динамические методы измерений силы тяжести
- •2.7.3. Статические методы измерений силы тяжести
- •Общее устройство кварцевых астазированных гравиметров.
- •Чувствительная система гравиметра.
- •Подготовка гравиметров к работе
- •2.8. Методика гравиметрической съемки
- •2.8.1. Общие положения
- •2.8.2. Опорная сеть
- •2.8.3. Рядовая сеть
- •2.8.4. Методика топо-геодезического обеспечения гравиметрических работ
- •2.9. Камеральная обработка данных съемки
- •2.9.1. Первичная обработка данных
- •9.2.2. Окончательная обработка
- •1. Поправка за высоту точки стояния прибора.
- •3. Поправка за влияние окружающего рельефа
- •2.10. Решение прямой и обратной задач гравиразведки
- •2.10.1. Способы решения прямой задачи.
- •2.10.2. Способы решения обратной задачи.
- •Практическое задание № 3
- •2.10.3. Построение контактной поверхности
- •Практическое задание № 4
- •Контрольные вопросы
- •3. Магниторазведка
- •3.1. Магнитное поле земли
- •3.1.1. Дипольное поле Земли и элементы вектора геомагнитного поля
- •3.1.2. Магнитосфера и радиационные пояса Земли
- •3.1.3. Структура геомагнитного поля
- •3.1.4. Вариации геомагнитного поля
- •3.1.5. Нормальное магнитное поле
- •3.1.6. Генеральная магнитная съемка и магнитные карты
- •Практическое задание № 5
- •3.1.7. Природа магнитного поля Земли
- •3.1.8. Элементы вектора Та
- •3.1.10. Условия и область применения магниторазведки
- •3.2. Магнетизм горных пород
- •3.2.1. Магнитные свойства минералов
- •3.2.2. Магнитные свойства горных пород
- •3.2.3. Палеомагнетизм и археомагнетизм
- •3.3. Способы измерения магнитногополя
- •3.3.1. Классификация способов измерений магнитного поля
- •3.3.2. Оптико-механические магнитометры.
- •3.3.3. Феррозондовые магнитометры.
- •Протонные магнитометры.
- •Квантовые магнитометры.
- •3.3.6. Индукционные и криогенные магнитометры.
- •3.4. Методика полевых работ и обработка полевых данных
- •3.4.1. Методика полевых магнитных съемок
- •3.4.2. Обработка данных магнитной съемки
- •3.5. Различие и взаимосвязь гравитационных и магнитных аномалий
- •3.5.1. Особенности гравитационных и магнитных аномалий
- •3.5.2. Определение величины и направления вектора намагничения геологических тел по наблюденным гравимагнитным аномалиям
- •Практическое задание № 6
- •Контрольные вопросы
- •4. Электрические методы разведки
- •4.1. Физико-геологические основы и классификация методов электроразведки
- •Метод сопротивлений
- •4.2.1. Нормальные поля точечных и дипольных источников
- •4.2.2. Электрическое профилирование (эп).
- •Над вертикальным пластом. Установка (в см) а2в6m2n.
- •4.2.3.Вертикальные электрические зондирования
- •Практическое задание № 7
- •Факторы, определяющие электрические свойства горных пород
- •Методы электрохимической поляризации
- •Метод естественного электрического поля
- •- Медный стержень; 2 – пробка; 3 – резиновая прокладка; 4 – пластмассовый корпус; 5 – пористый сосуд.
- •Практическое задание № 8
- •4.3.2. Метод вызванной поляризации
- •Электромагнитные и магнитотеллурические методы
- •Общие принципы электромагнитных зондирований.
- •Дистанционные и частотные зондирования
- •Магнитотеллурическое зондирование
- •Контрольные вопросы.
- •5.1.2. Устойчивое и подвижное радиоактивное равновесие
- •5.1.3. Единицы измерения радиоактивных величин.
- •5.2. Способы регистрации радиоактивных излучений
- •5.2.1. Газонаполненные детекторы излучения
- •5.2.2. Сцинтилляционные счетчики
- •5.2.3. Полупроводниковые счетчики
- •5.3. Основы полевой гамма-спектрометрии
- •5.3.1. Принцип раздельного определения u(Rа), Тh, к.
- •5.3.2. Факторы, влияющие на результаты γ-спектрометрии
- •5.3.3. Обработка и интерпретация материалов аэрогамма-съемки
- •5.3.4. Характеристика аэрогамма-спектральных аномалий
- •Контрольные вопросы.
- •6. ТерМические методы разведки
- •6.1. Физико-геологические основы терморазведки
- •6.1.1. Тепловые и оптические свойства горных пород.
- •6.1.2. Принципы теории терморазведки
- •6.1.3. Тепловое поле Земли
- •6.2. Аппаратура для геотермических исследований
- •6.3. Методика работ и области применения терморазведки
- •Контрольные вопросы
- •7. Возможности методов полевой геофизики при поисках нефтегазовых месторождений
- •7.1. Применение гравиразведки
- •1.Локальные структуры тектонического типа.
- •2.Локальные структуры аккумулятивного типа
- •7.2. Применение магниторазведки
- •7.2.1. Отражение месторождений углеводородов в региональном магнитом поле
- •7.2.2. Возможности магниторазведки при поисках залежей углеводородов.
- •Применение электроразведки для поисков нефтеперспективных объектов
- •7.3.1. Геоэлектрическая модель залежи углеводородов
- •7.3.2. Применение методов электроразведки для поисков нефтегазовых структур
- •Комплексирование методов полевой геофизики для поисков нефтеперспективных объектов
- •7.4.1. Физико-геологические модели залежей углеводородов
- •7.4.2. Комплексирование геофизических методов при нефтегазопоисковых работах.
- •Практическое задание № 9
- •Справочные сведения к выполнению работы.
- •4. Контрольные вопросы.
- •Литература
3.2.3. Палеомагнетизм и археомагнетизм
Характеристику геомагнитного поля изучают непосредственными наблюдениями в течение относительно короткого периода времени, около 400 лет. Для выяснения его характеристики в далеком прошлом выполняют археомагнитные и палеомагнитные исследования. Те и другие основаны на определении величины и направления вектора первоначальной естественной остаточной намагниченности Jпо .
В том и другом случае используется способность изучаемых объектов "запоминать" величину и направление вектора древнего магнитного поля. Исследования начаты в 40-х годах XX века.
При археомагнитных исследованиях изучают Jпо предметов материальной культуры, например, керамических изделий и кирпичей или у древних кострищ. Эти объекты при обжиге приобрели намагниченность, обусловленную действием на них существовавшего в то время геомагнитного поля, и в какой-то мере сохранили ее до настоящего времени. По направлению вектора Jпо можно получить представление о древнем поле.
Данные археомагнитных исследований совместно с палеомагнитными широко используются при выяснении характеристики вековых вариаций, рассмотренных выше.
При палеомагнитных исследованиях определяют первоначальную намагниченность различных горных пород. Первоначальная намагниченность пород во многих случаях оказывается более интенсивной (в десятки раз) и более устойчивой. Часть пород обладает повышенной "магнитной памятью" и сохраняет эту намагниченность до наших дней. При проведении палеомагнитных исследований допускают, что главное магнитное поле Земли всегда было дипольным и что среднее направление магнитной оси диполя за период порядка 10000 лет совпадало с осью вращения Земли. Предполагают, что породы намагничивались по полю. При этих условиях по намагниченности пород можно определять направление древнего меридиана и магнитную широту точки отбора образца. Имея эти данные, можно легко установить положение древнего магнитного полюса.
Палеомагнитные исследования стали особенно широко применять после установления естественной остаточной намагниченности у многих осадочных пород, считавшихся до этого практически немагнитными.
Несмотря на то, что исходные положения палеомагнетизма не являются бесспорными, накопленный материал уже сейчас позволяет вскрыть очень интересные, часто совершенно неожиданные факты и доказывает целесообразность проведения дальнейших исследований.
При проведении палеомагнитных исследований отбирают образцы горных пород с фиксированной ориентировкой их по отношению к вертикали и меридиану. В лаборатории производят магнитную "чистку" образцов с тем, чтобы снять более позднюю намагниченность. Оставшуюся наиболее устойчивую намагниченность принимают за первоначальную и определяют величину и направление Jпо. Определяют или уточняют время образования или геологический возраст породы. По направлению Jпо определяют координаты полюсов геомагнитного поля, существовавшего во время формирования породы. Эти полюсы древнего поля называют папеомагнитными, или виртуальными. Такие исследования выполняют с образцами разного возраста. Строят кривые миграции, или дрейфа виртуального полюса, с течением геологического времени.
Выяснилось, что кривые дрейфа полюсов, построенные по образцам пород, отобранным на территории одного и того же материка, имеют плавный вид, что свидетельствует о закономерном перемещении полюсов. Точки таких кривых, установленные по образцам молодых пород, расположены вблизи современных географических полюсов. Виртуальные полюсы древних времен оказались удаленными от современных географических полюсов на очень большие расстояния (до 30-50° большого круга).
Кривые дрейфа полюсов, построенные по образцам, взятым с разных материков, оказались резко различными (рис.3.12). Если допустить существование дрейфа континентов (по А.Вегенеру), то расхождение кривых резко уменьшится. Палеомагнитные данные о дрейфе континентов хорошо согласуются с палеогеографическими и палеоклиматическими.
Палеомагнитными исследованиями выявлена и другая очень важная особенность палеогеомагнитного поля, а именно многократные, относительно быстрые смены полярности его, названные инверсиями поля. При инверсии северный и южный полюсы Земли меняются местами, и вектор геомагнитного поля в любой точке Земли изменяет свое направление на 180°. Изменяется на 180° и направление вектора Jпо у пород, образовавшихся до и после инверсии.
Намагниченность, совпадающую с направлением современного поля, называют прямой, противоположную - обратной. Инверсии происходили в течение относительно короткого (в геологическом масштабе) промежутка времени, порядка 10000 лет.
Результаты палеомагнитных исследований уже сейчас широко используются в геологии.
Рис. 3.12. Кривые дрейфа "северного" виртуального полюса, построенные по образцам разных материков: 1 -Европы; 2 - Северной Америки; 3 -Австралии; 4 - Индии; 5 - Африки; S – силур; D - девон; Р - пермь; Т -триас; J - юра; К - мел; Р2 - эоцен: М – миоцен ( N1 )
Поскольку земное поле является единым для всей Земли, все одновозрастные породы приобретают одинаковую намагниченность - прямую или обратную. Границы, разделяющие породы с прямой и обратной намагниченностью, тоже являются едиными для всей Земли. В связи с этим открывается возможность расчленять по намагниченности толщи осадочных и вулканогенных пород и по положению виртуального полюса на кривой дрейфа определять их возраст. В настоящее время разрабатывается палеомагнитная геохронологическая шкала. Геологическое время на шкале разделено на магнитные эры, периоды и эпохи. Геомагнитной эпохой называют период времени, в течение которого преобладает прямая или обратная полярность. Кратковременные изменения полярности внутри эпохи называют эпизодами.