
- •Глава7 программируемая логика и ее применение в микропроцессорных системах
- •7.1. Общие сведения, классификация
- •7.1.1. Уровень интеграции интегральных схем (ис) и его влияние на качество цифровой аппаратуры и ее проектирование.
- •7. 1. 4. Области применения микросхем с программируемой логикой
- •7.2. Первые поколениямикросхем с программируемой структурой
- •7.2.1. Программируемые логические матрицы и программируемая матричная логика
- •7.2.2. Базовые матричные кристаллы
- •7.3. Типичные фрагменты схемотехники ис пл. Общие свойства ис пл
- •7.3.1. Типичные схемотехнические решения
- •7.3.2. Свойства ис пл, важные для их применения в составе систем
- •7.4. Fpga-программируемые пользователем вентильные матрицы
- •7.4.1. Архитектура и блоки fpga
- •7.4.2. Популярные fpga фирмы «xilinx»
- •7.5. Cpld - сложные программируемые логические устройства
- •7.5.1. Архитектура и блоки cpld
- •7.5.2. Популярные cpld фирмы «altera»
- •7.6. Сбис пл комбинированной архитектуры
- •7.6.1. Общие сведения
- •7.6.2. Сбис пл комбинированной архитектуры flex10k
- •7.7. Сбис программируемой логики типа «система на кристалле»
- •7.7.1. Общие сведения
- •7.7.2. Сбис пл с конфигурируемостью всех областей кристалла
- •7.7.3. Сбис пл класса «система на кристалле» с блочной архитектурой
- •7.8. Конфигурирование бис/сбис программируемой логики
- •7.9. Методика оценки параметров ис пл
- •7.9.1. Вводные замечания
- •7.9.2. Об оценке сложности микросхем программируемой логики
- •7.9.3. Об оценке быстродействия микросхем программируемой логики
- •7.9.4. Параметры популярных семейств микросхем программируемой логики
- •7.10. Аналоговые программируемые микросхемы
- •7.10.1 Общие сведения
- •7.10.2. Практические разработки
7.10.2. Практические разработки
БИС МРАА020 фирмы «Motorola» (рис. 7.36) - набор конфигурируемых аналоговых блоков CAB (Configurable Analog Blocks), соединяемых между собой и подключаемых к элементам ввода/вывода ключевыми КМОП-элементами. Конфигурации CAB и состояния переключателей определяются содержимым памяти типа SRAM.
БИС реализованы в корпусе с 160 контактами и содержат 20 CAB в матрице 4x5. Каждый CAB (рис. 7.37) содержит один операционный усилитель ОУ, пять регулируемых конденсаторов, компаратор, набор переключателей и управляющую логику.
Для разработок проектов с использованием БИС типа МРАА фирма «Motorola» создала специальные средства: библиотеку макрофункций, САПР для проектирования конфигурации БИС, кабели для загрузки данных конфигурации из компьютеров и прототипные платы (Evaluation Boards) для верификации проектных решений.
Каждая макрофункция библиотеки соответствует решению определенной задачи и позволяет задать функциональную характеристику проектируемого блока не путем вычисления требуемых параметров схемы, а путем задания функциональных характеристик узла (частоты генератора, коэффициента усиления усилителя, полосы пропускания для фильтра и т. д.).
В качестве САПР разработан программный пакет EasyAnalogDesign-Software, ориентированный на работу в PC-совместимых компьютерах в ОС Windows 95/NT. Работа проектировщика с проектом организована в форме интерактивного общения. Проектировщик задает типы макрофункций, расположенных в выбранных местах матрицы, и требуемые свойства узлов. Далее пакет позволяет организовать соединения между схемными элементами и их связи с выходными блоками, контролируя и блокируя при этом недопустимые типы соединений. После завершения формирования проекта пакет позволяет загрузить данные конфигурации БИС соединением при помощи специального загрузочного кабеля выхода последовательного порта компьютера с БИС МРАА020.
Прототипная плата Evaluation Board помимо БИС РАА020 содержит цепи, поддерживающие функционирование БИС, и различные органы пользовательского управления, что обеспечивает легкость и скорость верификации созданных проектов.
К реализуемым на одном CAB функциональным узлам относятся усилительные каскады с заданным коэффициентом усиления, сумматоры, вычитатели, сглаживающие каскады, цепи выборки и хранения аналоговых сигналов, фильтры первого порядка. Более сложные функ
.
циональные узлы, такие как биквадратные и полосовые фильтры, детекторы уровней и др. могут быть образованы с помощью соединения нескольких CAB в требуемую структуру.
Микросхемы семейства ispPAC фирмы «Lattice Semiconductor» имеют ряд отличий от микросхем фирмы «Motorola». В них не используется техника переключаемых конденсаторов, они архитектурно проще (имеют меньше конфигурируемых ресурсов), имеют меньшие габаритные размеры и число контактов ввода/вывода. Память конфигурации реализована по технологии EEPROM и может загружаться через специально выделенные контакты JTAG интерфейса. Конфигурация может быть закрыта от несанкционированного доступа битом секретности. Отличием является и включение в состав конфигурируемых ресурсов не только аналоговых, но и цифроаналоговых средств (схема ispPAC20 имеет встроенный 8-разрядный цифроаналоговый преобразователь). Заметим при этом, что цифроаналоговые и аналого-цифровые блоки имеют, как правило, жесткую внутреннюю структуру, не позволяющую произвольно их перестраивать. Например, ясно, что из двух 8-разрядных ЦАП или АЦП непосредственным образом не составить 16-разрядные ЦАП и АЦП, поскольку точностные требования к параметрам таких блоков резко различаются. Также не имеет смысла разбивать 16-разрядные ЦАП и АЦП на 8-разрядные, поскольку при реализации 8-разрядных преобразователей не нужны такие жесткие точностные требования, как это необходимо для 16-разрядных.
Структура ИС ispPAC20 (рис. 7.38) имеет в основе два программируемых усилительных блока (РАСЫоск) с дифференциальными входными усилителями, имеющими и дифференциальный выход, что позволяет изменять знак и численное значение коэффициента усиления в пределах от 1 до 10 целочисленными приращениями. Конденсаторы цепей обратных связей могут программироваться на величины от 1 до 63 пФ (всего 128 возможных значений) и позволяют строить на основе усилительных ступеней активные фильтры. Возможны конфигурации интеграторов. Как видно из рисунка, один РАС-блок имеет на входе двухвходовый коммутатор, а другой - внешнее управление инвертированием. Помимо РАС-блоков в БИС включены два аналоговых компаратора, коммутационные линии, 8-разрядный ЦАП, память конфигурации и средства ее загрузки (JTAG контроллер).
Схема ispPACIO отличается от уже рассмотренной наличием только четырех программируемых РАС-блоков.
Точностные возможности макроячеек микросхем ispPAC достаточно далеки от предельных для аналоговой техники, но могут считаться удовлетворительными для немалого числа практически реализуемых устройств. Общее представление об этих точностных возможностях дают следующие цифры. Приведенный ко входу температурный дрейф макроячейки составляет 50 мкВ/град., диапазон изменения выходного напряжения на отдельном выходе микросхемы 3-4 В при сопротивлении нагрузки между дифференциальными выходами 300 Ом. Для выходных напряжений АЦП достижимо полное использование напряжения питания 5 В, при этом значение единицы младшего разряда 1,25 мВ. Эксплуатационный диапазон температур микросхемы - от -40 до +85 °С. Если алгоритм работы конкретного устройства допускает наличие пауз в процессе его функционирования, то можно проводить периодическую автокалибровку характеристик блоков, длительность которой 100 мс. Автокалибровка гарантирует дифференциальное напряжение смещения нуля в 1 мВ.
Типовые значения коэффициента гармоник для дифференциального выхода при единичном усилении -88 дб на 10 кГц и -67 дб на 100 кГц, а при коэффициенте усиления 10 соответственно -72 дб и -61 дб.
Максимальная погрешность установки коэффициента усиления макроячейки составляет 4 %.
Погрешность установки частоты полюса в схеме активного фильтра не более 5 %. Время установления выходного напряжения ЦАП с погрешностью в 0,1 % - не более 6 мкс, дифференциальная нелинейность ЦАП - не более значения единицы младшего разряда. Типовое время переключения компаратора при напряжении перепада 10 мВ составляет 750 не.
Типовой входной ток макроячейки - 3 пА, максимальные токи потребления микросхем - приблизительно 20 мА.
Число циклов стирания-перепрограммирования - не менее 10 000.
Программное обеспечение фирмы «Lattice Semiconductor» под названием РАС-Designer ориентировано на использование в PC-совместимых компьютерах с ОС Windows. САПР позволяет вводить информацию о проекте, моделировать функционирование схем, компилировать проекты и загружать результаты компиляции в память конфигурации БИС.