- •Электропроводимость полупроводников. Зависимость электропроводности от внешних факторов. Материал полупроводников.
- •Электронные ключи и формирование импульсов.
- •Задача. Изобразить схему усилительного каскада на полевом транзисторе с общим истоком и пояснить назначение ее элементов.
- •Определение и свойства p-n- перехода. Вах p-n- перехода.
- •Триггеры, устройство, принцип действия, применение.
- •Виды электронной эмиссии, применение в электронных приборах.
- •Генераторы релаксационных колебаний. Мультивибратор
- •Симметричный мультивибратор на транзисторах с коллекторно-базовыми связями
- •Выпрямительные полупроводниковые диоды (определение, уго, прямое и обратное включение)
- •Генераторы гармонических колебаний. Lc – генератор. Условие баланса фаз и амплитуд.
- •Стабилитроны (определение, уго, параметры, включение в цепь)
- •Биполярные транзисторы (определение, структура, обозначение, принцип работы)
- •Режимы работы усилителя.
- •Классификация ппд.
- •Билет № 13
- •Обратная связь в усилителях.
- •Режимы работы транзистора.
- •Цепи межкаскадной связи. Схемы с непосредственными, емкостными и индуктивными связями между каскадами. Влияние связи на качественную работу каскадов усиления.
- •Билет № 16
- •1. Полевые транзисторы с управляемым p-n- переходом.
- •Схемы для получения необходимого смещения
- •Задача. Во сколько раз изменится напряжение сигнала на выходе усилителя, если его усиление возрастает до 40 дБ? билет № 17
- •Биполярные транзисторы (определение, структура, уго, принцип работы).
- •Структура биполярного транзистора: а-транзистор р- п-р-типа; б -транзистор п-р-n-типа.
- •Принцип работы:
- •Билет № 18
- •У словное графическое обозначение на схемах биполярных транзисторов различной структуры. Требования к базе транзистора.
- •Электровакуумные диоды и триоды. Условное графическое обозначение на схемах. Устройство и назначение элементов прибора.
- •Задача. Изобразить принципиальную схему двухкаскадного упт.
- •Основные схемы включения биполярных транзисторов в цепь. И их параметры.
- •Параметры эл. Усилитей
- •3) Мостовая схема выпрямления
- •2) Режимы работы усилителей
- •1.Параметры электронных усилителей
- •2.Классификация
- •Полупроводниковые интегральные микросхемы (технология изготовления, элементы)
- •3. Привести принципиальную электрическую схему управляемого выпрямителя и его временную диаграмму.
3) Мостовая схема выпрямления
2) Режимы работы усилителей
каскадах с малыми нелинейными искажениями.
применяется в однотактных схемах усиления, в маломощных каскадах.
б) Режим В, ток покоя равен нулю, высокий КПД (60-70%), высокий уровень нелинейных искажений.
Применяется в двухтактных схемах усиления. Используется в двухтактных схемах
в) Режим АВ – промежуточный между А и В. КПД = (40-50)%
Более экономичен, чем А, и характеризуется меньшими нелинейными искажениями, чем В. 1800 ≥ Ѳ ≥ 900
Применяется в двухтактных усилителях мощности.
г) В усилителях режима С ток в выходной цепи течет менее половины периода входного сигнала. Каскад усиления при отсутствии сигнала и при его малых значениях не работает, поэтому усилитель потребляет от источника питания меньше энергии, чем в режиме В. Усилители режима С не воспроизводят весь период усиливаемого сигнала. Это искажает сигнал. Поэтому в усилителях с малыми искажениями режим С не применяется. Он нашел применение в радиопередающих устройствах.
Билет №23
1.Параметры электронных усилителей
Входное сопротивление Rвх = Uвх2 /Pвх - сопротивление между входными зажимами усилителя.
Выходное сопротивление Rвых = Uвых2 /Pвых - сопротивление между выходными зажимами усилителя при отключенной RН
Коэффициент усиления – отношение напряжения или тока (мощности) на выходе усилителя к напряжению или току (мощности) на входе усилителя
КU = Uвых /Uвх Кi = Iвых/Iвх КP = Pвых / Pвх
2.Классификация
зависимости от диапазона рабочих частот
1.1. УНЧ (десятки Гц – десятки кГц);
В 1.2. УВЧ (сотни кГц – сотни МГц);
1.3. УПТ (усиливает сигналы постоянного и медленно меняющегося тока)
1.4. Импульсные (широкополосные): десятки Гц – сотни МГц
Узкополосные (избирательные)
Полупроводниковые интегральные микросхемы (технология изготовления, элементы)
Для изготовления полупроводниковых микросхем используют кремниевые монокристаллические пластины диаметром не менее 30 — 60 мм и толщиной 0,25 — 0,4 мм.
Элементы микросхемы — биполярные и полевые транзисторы, диоды, резисторы и конденсаторы — формируют в полупроводниковой пластине методами, известными из технологии дискретных полупроводниковых приборов (селективная диффузия, эпитаксия и др.) [5]. Межсоединения выполняют напылением узких проводящих дорожек алюминия на окисленную (т. е. электрически изолированную) поверхность кремния, имеющую окна в пленке окисла в тех местах, где должен осуществляться контакт дорожек с кремнием (в области эмиттера, базы, коллектора транзистора и т. д.). Для соединения элементов микросхемы с ее выводами на проводящих дорожках создаются расширенные участки —контактные площадки.
