
- •2. Распространение микроорганизмов в природе.
- •5) Описательный этап в истории микробиологии
- •7. Работы Роберта Коха.
- •8. Работы Луи Пастера.
- •9) Появление экологического направления в микробиологии. Работы Виноградского и Бейеринка.
- •12. Основные принципы систематики микроорганизмов.
- •13) Основные принципы номенклатуры микроорганизмов. Понятия «вид», «культура», «штамм», «клон».
- •14. Искусственные системы классификации бактерий.
- •15. Морфология микроорганизмов: размеры и формы. Биопленки.
- •16. Химический состав бактериальной клетки.
- •18. Клеточная стенка грамотрицательных бактерий.
- •19. Функции клеточной стенки бактерий.
- •21) Клеточная стенка архей.
- •22.Строение мембраны бактерий.
- •23. S слой бактерий.
- •24. Поверхностные структуры бактерий: капсулы, слизистые слои и чехлы.
- •25) Поверхностные структуры бактерий: пили и шипы.
- •26. Жгутики бактерий.
- •27. Цитология микроорганизмов: цитоплазма и включения.
- •29) Движение бактерий. Таксисы
- •30. Генетический аппарат бактерий. Нуклеоид. Плазмиды. Типы
- •31. Размножение бактерий.
- •33) Синхронная культура микроорганизмов
- •34. Проточная культура микроорганизмов.
- •35. Потребности прокариот в питательных веществах. Прототрофы и ауксотрофы.
- •36. Транспорт веществ через мембрану бактерий.
- •37) Отношение бактерий к температуре
- •38. Отношение бактерий к молекулярному кислороду.
- •39. Отношение бактерий к влажности.
- •40. Отношение бактерий к осмотическому давлению среды.
- •41) Отношение бактерий к концентрации ионов водорода (рН среды).
- •42. Отношение бактерий к излучению, гидростатическому давлению и ультразвуку.
- •43. Антибиотики.
- •44. Взаимоотношения микроорганизмов между собой. Типы симбиоза.
- •45) Антибиоз
- •46. Метаболизм микроорганизмов: анаболизм и катаболизм. Способы получения
- •47. Общая характеристика процессов брожения.
- •48. Молочнокислое брожение.
- •49) Спиртовое брожение.
- •50. Пропионовокислое брожение.
- •52. Общая характеристика процессов дыхания.
- •53) Цикл Кребса.
- •55. Атф синтаза: строение и функции.
- •56. Анаэробное дыхание: общая характеристика. Типы анаэробного дыхания.
- •57) Общая характеристика бактериального фотосинтеза
- •59. Фотосинтез у зеленых бактерий: характеристика фототрофов, морфология и локализация фотосинтетического аппарата, механизм фотосинтеза
- •60. Фотосинтез у цианобактерий: характеристика фототрофов, морфология и локализация фотосинтетического аппарата, механизм фотосинтеза.
- •62. Участие микроорганизмов в круговороте азота в природе. Азотфиксация.
- •63. Участие микроорганизмов в круговороте азота в природе. Денитрификация и ассимиляция.
- •64. Участие микроорганизмов в круговороте азота в природе. Нитрификация и
- •66. Участие микроорганизмов в круговороте серы в природе. Восстановительные этапы.
- •67. Участие микроорганизмов в круговороте серы в природе. Окислительные этапы.
- •68. Участие микроорганизмов в круговороте серы в природе. Разложение
- •70. Вирусы: история их исследования, их значение и использование.
- •71. Общая характеристика вирусов: размеры, происхождение, систематика, номенклатура.
- •72. Химический состав и строение вирусов.
- •73. Бактериофаги.
55. Атф синтаза: строение и функции.
АТФ-синтаза (Н+-АТФ-аза) - интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из 2 белковых комплексов, обозначаемых как F0 и F1.
Гидрофобный комплекс F0 погружён в мембрану. Он служит основанием, которое фиксирует АТФ-синтазу в мембране. Комплекс F0 состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс.
Комплекс F1 выступает в митохондриальный матрикс. Он состоит из 9 субъединиц (Зα, 3β, γ, ε, δ). Субъединицы аир уложены попарно, образуя "головку"; между α- и β-субъединицами располагаются 3 активных центра, в которых происходит синтез АТФ; γ-, ε-, δ- субъединицы связывают комплекс F1 с F0.
Повышение концентрации протонов в межмембранном пространстве активирует АТФ-синтазу. Электрохимический потенциал ΔμH+ заставляет протоны двигаться по каналу АТФ-синтазы в матрикс. Параллельно под действием ΔμH+ происходят конформационные изменения в парах α, β-субъединиц белка F1, в результате чего из АДФ и неорганического фосфата образуется АТФ. Электрохимический потенциал, генерируемый в каждом из 3 пунктов сопряжен ия в ЦПЭ, используют для синтеза одной молекулы АТФ.
56. Анаэробное дыхание: общая характеристика. Типы анаэробного дыхания.
Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.
Осуществляется прокариотами (в редких случаях — и эукариотами) в анаэробных условиях. При этом факультативные анаэробы используют акцепторы электронов с высоким окислительно-восстановительным потенциалом (NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид и т. д.), у них это дыхание конкурирует с энергетически более выгодным аэробным и подавляется кислородом. Акцепторы с низким окислительно-восстановительным потенциалом (сера, SO42−, CO2) применяются только строгими анаэробами, гибнущими при появлении в среде кислорода.
Типы анаэробного дыхания:
- Нитратное и нитритное дыхание: Прокариоты обладают возможностью использовать в качестве акцептора электрона в дыхательной электронтранспортной цепи (ЭТЦ) вместо кислорода различные окисленные соединения азота. Ферментом, катализирующим финальную стадию транспорта электрона — его перенос на нитрат-анион — является нитратредуктаза. При использовании нитритов ферментов и путей его восстановления два:
NO-образующая нитритредуктаза восстанавливает нитрит до оксида азота (II). Это одна из стадий денитрификации.
NH3-образующая нитритредуктаза восстанавливает нитрит до иона аммония, что является заключительной стадией аммонификацией.
- Сульфатное дыхание: бактерии окисляют органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты, тиосульфаты, сульфиты, молекулярную серу. Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс — сульфатвосстанавливающих или сульфатредуцирующих. Все сульфатвосстанавливающие бактерии — облигатные анаэробы.Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ. Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества — пируват, лактат, сукцинат, малат, а также некоторые спирты.
-Фумаратное дыхание: В качестве акцептора электронов может использоваться фумарат. Трансмембранный протонный потенциал образуется следующим образом: фумаратредуктаза связывает протоны в цитоплазме, а дегидрогеназы в начале ЭТЦ выделяют протоны в периплазму. Перенос электронов с дегидрогеназ на фумаратредуктазу происходит обычно через мембранный пул менохинонов. Фумарат, как правило, отсутствует в природных местообитаниях и образуется самими микроорганизмами из аспартата, аспарагина, сахаров, малата и цитрата. В виду этого большинство бактерий, способных к фумаратному дыханию содержат фумаразу, аспартат:аммиак-лиазу и аспарагиназу, синтез которого контролирует чувствительный к молекулярному кислороду белок.