- •Тема 1. Введение. Основные понятия и определения
- •1.1 Разомкнутые и замкнутые системы автоматического управления (сау)
- •1.2 Классификация систем радиоавтоматики
- •Тема 2. Функциональные схемы систем радиоавтоматики и их параметры.
- •2.1 Система автоматической подстройки частоты (апч)
- •2.2 Система фазовой автоподстройки частоты (фапч)
- •2.3 Система автоматического слежения по направлению (асн)
- •2.4 Система автоматического слежения по дальности (асд)
- •2.5 Фазовый дискриминатор (фд)
- •2.6 Частотный дискриминатор (чд)
- •2.7 Временной дискриминатор (вд)
- •Тема 3. Математический анализ аппарат анализа линейных непрерывных стационарных систем
- •3.1 Математическое описание линейных непрерывных стационарных систем
- •3.1.1Основные преобразования в линейных системах
- •3.2 Типовые линейные звенья
- •3.2.1 Безынерционное звено
- •3.2.2 Инерционное звено
- •3.3 Структурная схема систем радиоавтоматики (ра)
- •3.3.1 Структурная схема систем апч
- •3.4 Правило структурных преобразований
- •3.4.5 Правило переноса точки присоединения звеньев
- •Тема 4. Устойчивость линейных непрерывных стационаных систем
- •4.1 Понятие устойчивости. Требования к корням характеристического полинома
- •4.2 Критерий устойчивости Гурвица
- •4.2.1 Методика определения устойчивости по критерию Гурвица
- •4.2.2 Методика определения критического коэффициента усиления
- •4.3 Критерий Михайлова
- •4.3.1 Методика анализа устойчивости по критерию Михайлова
- •4.3.2 Методика определения критических частот и критического коэффициента усиления
- •4.4 Критерий устойчивости Найквиста
- •4.4.1 Методика определения устойчивости по критерию Найквиста
- •4.4.2 Методика определения критической частоты и критического коэффициента усиления
- •4.4.3Методика определения запасов устойчивости по амплитуде и по фазе
- •4.5 Анализ устойчивости по ачх и фчх
- •4.6 Устойчивость линейной системы по лачх и лфчх
- •4.7 Структурно неустойчивая система
- •4.8 Устойчивость системы с запаздыванием
- •Тема 5. Анализ линенйных непрерывных стационарных систем при детерминированых (регулируемых) воздействиях
- •5.1 Ошибки линейных систем после окончания переходного процесса
- •5.1.1 Методика определения ошибки после окончания переходного процесса
- •5.2 Ошибка в течении переходного процесса (динамические ошибки)
- •5.3 Определение показателей качества переходного процесса по лачх
- •5.4 Анализ линейных систем методом пространства состояний
- •5.4.1 Краткие сведения из теории матриц
- •5.4.2 Метод пространства состояний
- •5.4.3 Решение матричного дифференциального уравнения
- •5.4.4 Методика анализа линейных система методом пространства состояний
- •Тема 6. Анализ точности линейных непрерывных стационарных систем при случайных воздействиях
- •6.4 Определение дисперсии ошибки после окончания переходного процесса
- •6.1.1 Методика определения дисперсии ошибки при случайных воздействиях
- •6.2 Оптимизация параметров линейных систем радиоавтоматики
- •6.2.1 Оптимизация параметров линейных систем в случае детерминированных процессов
- •6.2.2 Оптимизация параметров линейных систем при детерминированном полезном и случайном мешающем воздействиях
- •6.2.3 Оптимизация параметров линейных систем при случайных полезном и мешающем воздействиях
- •6.3 Определение дисперсии ошибки в переходном режиме при случайных воздействиях
- •6.4 Методы коррекции линейных систем
- •6.4.1 Последовательная коррекция
- •6.4.2 Параллельные корректирующие звенья
- •Тема 7. Анализ нестационарных систем радиоавтоматики
- •Тема 8. Анализ нелинейных систем радиоавтоматики
- •8.1 Основные понятия. Нелинейные звенья
- •8.2 Методы анализа нелинейных систем при детерминированных воздействиях
- •8.3 Метод гармонической линеаризации (баланса)
- •8.3.2 Анализ колебаний нелинейной системы. Метод Гольдфарба
- •8.4 Анализ линейных систем при случайных воздействиях
- •8.4.1 Метод статистической линеаризации
- •Тема 9. Анализ линейных прерывных систем ра
- •9.1 Основные понятие и определения
- •9.2 Примеры построения систем прерывистого регулирования
- •9.2.1 Импульсная система апч
- •9.2.2 Дискретная система асд
- •9.3 Математический аппарат анализа линейных прерывных систем
- •9.4.1 Решётчатые функции
- •9.3.2 Дискретное преобразование Лапласа в точках - преобразований
- •9.3.3 Основные теоремы - преобразований
- •9.4Анализ линейных разомкнутых импульсных систем методом - преобразований
- •9.4.1 Структурная схема разомкнутой импульсной системы и характеристики её элемента
- •9.4.2 Уравнение и передаточная функция разомкнутой импульсной системы
- •9.4.3 Переходные и установившиеся процессы разомкнутых импульсных систем
- •9.4.4 Методика определения передаточной функции разомкнутой импульсной системы в области - преобразований
- •9.5 Анализ замкнутых систем прерывистого регулирования
- •9.5.1 Передаточная функция замкнутой системы прерывистого регулирования
- •9.5.2 Установившейся и переходный режимы в замкнутых системах прерывистого регулирования
- •9.6 Устойчивость замкнутых систем прерывистого регулирования
- •9.6.1 Требования к корням характеристического полинома
- •9.6.2 Алгебраический критерий устойчивости Гурвица
- •9.6.3 Методика исследования устойчивости системы прерывистого регулирования по корням характеристического полинома
- •9.6.4 Методика определения устойчивости систем прерывистого регулирования по критерию Гурвица
- •9.7 Анализ устойчивости систем прерывистого регулирования частотной плоскости
- •9.7.1Критерий устойчивости Найквиста
- •Тема 10.Синтез оптимальных линейных систем радиоавтоматики (ра)
- •10.1 Постановка задачи
- •10.2 Синтез оптимального фильтра Винера
- •10.2.1 Интегральное уравнение Винера-Хопфа
- •10.2.2 Методика синтеза оптимального фильтра Винера
- •10.2.3. Дискретная ошибка оптимального фильтра Винера
- •10.3 Синтез оптимального фильтра Колмана-Бьюси
- •10.3.1 Описание сообщения
- •10.3.2 Постановка задачи
- •10.3.3 Оптимальный фильтр Калмена для дискретных систем
- •Тема 11. Цифровое моделирование систем ра на эвм
- •11.1 Сущность и задачи цифрового моделирования
- •11.2 Цифровые модели линейных систем, основанные на дискретной свертке
- •11.2.1 Дискретизация низкочастотных систем с использованием формул частотного интегрирования
- •11.2.2 Дискретизация по методу замены непрерывной системы эквивалентной импульсной
- •11.3 Моделирование узкополосных линейных систем
- •11.3.2 Цифровые модели узкополосных линейных систем
- •11.4 Моделирование нелинейных систем
- •11.4.1 Моделирование нелинейных безинерционных звеньев
- •11.4.2 Моделирование разомкнутых нелинейных функциональных систем
- •11.4.3 Моделирование замкнутых нелинейных функциональных систем
- •Тема 12. Цифровые системы радиоавтоматики
- •12.1 Общая характеристика цифровых следящих систем
- •12.2 Функциональные и структурные схемы цифровых систем ра
- •12.2.1 Аналогово-цифровой преобразователь (ацп)
- •12.2.2 Цифровой фільтр(цф)
- •12.2.3 Цифро-аналоговый преобразователь (цап)
- •12.2.4 Структурная схема аналогово-цифровых систем а ра
Тема 5. Анализ линенйных непрерывных стационарных систем при детерминированых (регулируемых) воздействиях
Устойчивость системы это необходимое, но недостаточное требование, определяющее возможность использования системы.
Второй важной характеристикой
является точность системы, которая
определяется выражением
,
где
- ошибка регулирования;
- истинное значение
информационного параметра (дальность,
угловые координаты и т.д);
- выходной сигнал или оценка
информационного параметра.
Ошибки определяются в двух случаях:
1. после окончания переходного процесса, при этом рассматриваются 2 случая
1.1 если на вход системы подать постоянное воздействие, то после окончания переходного процесса в системе возникает установившейся режим, а ошибки называют статическими.
1.2 если на вход системы подать медленно изменяющиеся воздействия, то сравнительно с длительностью переходного процесса в системе возникает вынужденный режим, а ошибки называют скоростными.
2. ошибки в течение переходного процесса или динамические ошибки.
Для анализа точности могут быть использованы следующие методы:
1. решение ЛНДУ
2. интеграл Дюамеля (свёртки)
3. передаточная функция или комплексный коэффициент усиления
4. метод моделирования на ЭВМ
5.1 Ошибки линейных систем после окончания переходного процесса
Опишем входное воздействие с помощью степенного полинома:
.
Введём понятие передаточной
функции по ошибке для воздействия
:
.
Если ошибка после окончания процесса постоянна, то для её нахождения можно воспользоваться теоремой о конечном значении оригинала:
.
В общем случае, ошибка
определяется выражением
,
где
- коэффициенты ошибки и определяются
выражением:
.
С использованием предложено широко распространённая классификация систем радиоавтоматики по порядку астатизма.
Порядок астатизма системы
равен номеру первого отличного от нуля
коэффициента ошибки
.
Если
,
то система является статической или со
статизмом нулевого порядка.
Порядок астатизма системы равен числу интеграторов, включённых в контур регулирования между точкой измерения ошибки и точкой измерения воздействия.
Пусть не содержит интеграторы, а содержит 2 интегратора.
- система является со статизмом
нулевого порядка;
- система имеет астатизм 2-ого порядка.
Порядок астатизма системы
равен минимальной степени
в числителе передаточной функции
.
Установим связь между порядком
астатизма степени
и
степенью входного воздействия
.
1. Первый частный случай: пусть
,
тогда
.
2. Второй частный случай:
,
тогда
либо
,
либо
,
то есть ошибка
.
3. Третий частный случай: пусть
,
то ошибка является функцией времени.
5.1.1 Методика определения ошибки после окончания переходного процесса
1. Найдём передаточную функцию разомкнутой системы
.
2. Найдём передаточную функцию по ошибке для воздействия
.
3. Найдём коэффициенты ошибок
.
4. Вычислим ошибку
.
Пример №1. Определить ошибку
статической системы АПЧ для воздействий
1.
,
где
.
2.
.
3.
4.
Анализ этих выражений
показывает, что с увеличением
,
ошибки уменьшается, но нужно помнить,
что
,
в противном случае система неустойчива.
А так же
ухудшает точность системы.
Пример №2. Определить после окончания переходного процесса астатической системы АПЧ для воздействия .
1.
,
где
.
2.
.
3.
4.
5.
