
- •Алфавітний покажчик
- •Агрегирование и эмержентность систем
- •Алгоритм – образ будущей деятельности
- •Алгоритм декомпозиции
- •Алгоритм проведения системного анализа
- •Блок-схема системы передачи информации
- •Большие и сложные системы
- •В чем заключается закономерность иерархической упорядоченности систем? Приведите примеры применения данной закономерности.
- •В чем заключается смысл моделирования как метода научного познания?
- •В чем заключаются особенности имитационного и машинного моделирования?
- •В чем ограничены возможности механизации?
- •В чем различие между полностью формализованным и не полностью определенным алгоритмом?
- •В чем состоит условие физической реализуемости динамической модели?
- •Виды агрегирования
- •Виды неопределённостей в измерениях
- •Внедрения результатов системного анализа
- •Возникновение и развитие системных представлений в практической деятельности человека
- •Второе определение системы
- •Выбор в условиях неопределённости
- •Выбор в условиях статистической неопределённости
- •Подведем итог
- •Выбор. Человеко-машинные системы выбора
- •Гибкость систем.
- •Групповой выбор
- •Дайте определение понятий: внешняя среда, надсистема, подведомственные системы, система в целом. Поясните их взаимосвязь
- •Дать толкование понятию «Окружающая среда»
- •Декомпозиция и агрегирование в системных исследованиях
- •Динамика моделей
- •Динамические модели системы
- •Дифференциальная энтропия
- •Достоинства и недостатки идеи оптимизации
- •Знаковые модели и сигналы
- •Знания. Разновидность знаний
- •По природе
- •По степени научности
- •По местонахождению
- •Идентификация математических моделей. Идентификация как наука.
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Иерархия моделей систем
- •Измерительные шкалы
- •Измерительные шкалы. Порядковые шкалы
- •Измерительные шкалы. Шкала наименований
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Измерительные шкалы. Шкалы отношений
- •Информационные аспекты систем
- •Искусственные и естественные системы
- •Какие системные процессы изучает кибернетика?
- •Какие системные процессы изучает синергетика?
- •Какие функции выполняет модель в деятельности человека?
- •Какова связь между вторым определением системы и ее структурной схемой?
- •Каково главное отличие между познавательной и прагматическими моделями?
- •Каковы основные события в развитии системных представлений в течении последних 150 лет?
- •Каковы особенности мышления позволяют утверждать, что оно системно?
- •Каковы причины того, что модели изменяются со временем
- •Каковы типы моделей знаний, их характеристики?
- •Каковыми признаками должна обладать часть системы, чтобы ее можно было назвать элементом?
- •Классификация систем
- •Классификация систем по описанию оператора и способу управления.
- •Классификация систем по описанию переменных
- •Классификация систем по происхождению
- •Количество информации. Свойство количества информации. Единицы измерения информации
- •Конфигуратор. Разновидности языка конфигуратора
- •Критериальный язык описания выбора Критериальный язык описания выбора
- •Математическое и компьютерное моделирование
- •Материальные модели в виде подобия
- •К условным моделям относят знаковые модели, которые подразделяются на два вида:
- •Методы генерирования альтернатив
- •Многократный выбор
- •Модели систем. Первое определение системы Модель "Черного ящика"
- •Модель состава системы
- •Структурная модель системы
- •Модель «черный ящик». Сложности построения модели «черн. Ящик»
- •Модель состава системы. Сложность построения модели состава системы
- •Модель структуры системы
- •Модель структуры системы. Сложности построения модели структуры
- •Может ли какой-нибудь объект или явление быть несистемным? Обоснуйте ответ
- •Назовите главное условие автоматизации?
- •Описание выбора на языке бинарных отношений
- •Описание ситуации в «нечетких» представлениях
- •Опишите три способа повышения производительности труда механизация
- •Автоматизация
- •Кибернетизация
- •Определите понятие модели
- •Оптимизационный выбор
- •Основные положения теории информации
- •Основные признаки развивающихся систем
- •Отношения и структуры
- •Охарактеризуйте историю развития системных представлений
- •Охарактеризуйте понятия «системный анализ» и «системный подход». В чем заключаются принципы системного подхода?
- •Первое определение системы
- •Перечислите основные признаки системы
- •Перечислить некоторые типы классификаций систем !!! Білети №52-54 !!!
- •Познавательные и прагматические модели
- •Понятие «лингвистическая модель».
- •Наиболее важные свойства моделей, в том числе лингвистических.
- •Понятие «проблемная ситуация»
- •Понятие гетерогенной и гомогенной структур систем
- •Понятие модели системы
- •2.1. Множественность моделей системы
- •2.2. Первое определение системы
- •2.2.1. Определение
- •2.2.2. Проблемы и системы
- •Существуют такие модели систем:
- •Понятие об эволюционном моделировании и генетических алгоритмах
- •Понятие субъективных и объективных целей существования систем
- •Понятие эмерджентности
- •Представление знаний
- •Приведите аргументы в пользу системности материи?
- •Пропускная способность Гауссова канала святи
- •Различие между большими и сложными системами
- •Разновидности классификаций систем
- •Разновидности неопределённостей
- •Разновидности отбора
- •Системность – всеобщее свойство материи и познания
- •Соответствие и различие между моделью и действительностью
- •Соответствие между моделью и действительностью: конечность, упрощенность, приближенность, адекватность, истинность моделей
- •Способы воплощения моделей. Абстрактные модели
- •Способы реализации моделей
- •Способы решения многокритериальных задач
- •Статистические измерения. Методы обработки экспериментальных данных
- •Статические и динамические модели
- •Структура системы. Разновидности структур систем
- •Структурная схема системы
- •Структурная схема как соединение моделей
- •Теория игр. Общее представление
- •Типы сигналов. Реализация сигналов
- •Три ветви науки, изучающие системы
- •Условия реализации свойств моделей
- •Соответствие между моделью и действительностью
- •Формальная и содержательная модели
- •Функционирование и развитие систем
- •Цель как модель
- •Частотно временное представление сигналов
- •Классические частотно-временные представления.
- •Что заставляет нас пользоваться моделями объектов вместо самих объектов?
- •Что называется алгоритмом?
- •Что необходимо для перехода от моделей лингвистических к моделям математическим?
- •Что общего и в чем различие между понятием элемента и его моделью «черного ящика»?
- •Что представляет собой сетевая структура? в каких случаях применяются сетевые структуры? Какие понятия используются при применении сетевых моделей?
- •Что такое интегрировать модели?
- •Что такое категория, функтор?
- •Что такое проблемная ситуация?
- •Что такое системный анализ?
- •Шкала интервалов
- •Шкала отношений в измерении
- •Эволюция моделей
- •Эксперимент и модель. Активный эксперимент
- •Эксперимент и модель. Пассивный эксперимент
- •Экспертный выбор
- •Энтропия и ее свойства
- •Этапы компьютерного моделирования объектов и явлений
- •Разработка компьютерной модели для проведения эксперимента:
- •Компьютерный эксперимент:
- •Этапы системного анализа
- •Этика в системном анализе
- •Язык функции выбора
- •7.6 Иллюстрация различных аксиом, накладываемых на функции выбора
Функционирование и развитие систем
Под функционированием подразумевают процессы, которые происходят в системе (и окружающей ее среде), стабильно реализующей фиксированную цель.
Например, функционируют часы, городской транспорт, кинотеатр, канцелярия, радиоприемник, станок, школа.
Развитием называют то, что происходит с системой при изменении ее целей. Характерной чертой развития. Характерной чертой развития является тот факт, что существующая структура перестает соответствовать новой цели, и для обеспечения новой функции приходится изменять структуру, а иногда и состав системы, перестраивать всю систему.
Система может находится как в фазе развития, так и в состоянии функционирования.
Цель как модель
Моделирование является обязательным, неизбежным действием во всякой целесообразной деятельности, пронизывает и организует ее, представляет собой не часть, а аспект этой деятельности. Из предыдущего обсуждения также видно, что модель является не просто образом-заменителем оригинала, не вообще каким-то отображением, а отображением целевым.
Чтобы подчеркнуть это, представим, какие модели одного и того же бревна используют в своей деятельности разные члены туристской группы, пришедшей к месту новой стоянки: одному поручено оборудовать лагерь, и он прикидывает, использовать ли это бревно для стола или как сиденье; другой отвечает за кострище, а для дров от бревна требуются не геометрические, а совсем другие качества; третьего интересует возраст дерева, и он обследует спил бревна; художник ищет у бревна сук с замысловатым изгибом... Короче говоря, модель отображает не сам по себе объект-оригинал, а то, что в нем нас интересует, т.е. то, что соответствует поставленной цели.
Из того, что модель является целевым отображением, с очевидностью следует множественность моделей одного и того же объекта: для разных целей обычно требуются разные модели. Сама целевая предназначенность моделей позволяет все разнообразное множество моделей разделить на основные типы — по типам целей.
Частотно временное представление сигналов
Сигнал называется стационарным, если его статистические характеристики не меняются со временем. На практике сигналы часто не соответствуют этому требованию. Достаточно тяжело удовлетворительно обрабатывать нестационарные сигналы, используя концепции, предполагающие его стационарность, как например, классическое преобразование Фурье. Нестационарные сигналы обосновывают необходимость совместного частотно-временного анализа и представления. Нестационарные сигналы можно разделить на 2 типа: моментно-переходные и устойчивые. Моментно-переходные имеют короткую, конечную продолжительность. Устойчивые нестационарные сигналы имеют длительное, изменяющееся во времени поведение. На практике частотно-временное представление характеризуется точками на частотно-временной диаграмме с конечными временной и частотной осями. На практике частотно-временной анализ применяется к сигналам, у которых мгновенная полоса значительно уже, чем вся полоса спектральных характеристик сигнала. В качестве примера можно привести сигналы с линейно изменяющейся частотой, сигналы Доплера, сигналы следящей частотф и т.д. Для цифровой обработки сигнала его необходимо дискретизировать. Критерий Найквиста дает нам теоретический предел для скорости, с которой необходимо периодически дискретизировать сигнал, содержащий данные на конкретной максимальной частоте.