
- •Алфавітний покажчик
- •Агрегирование и эмержентность систем
- •Алгоритм – образ будущей деятельности
- •Алгоритм декомпозиции
- •Алгоритм проведения системного анализа
- •Блок-схема системы передачи информации
- •Большие и сложные системы
- •В чем заключается закономерность иерархической упорядоченности систем? Приведите примеры применения данной закономерности.
- •В чем заключается смысл моделирования как метода научного познания?
- •В чем заключаются особенности имитационного и машинного моделирования?
- •В чем ограничены возможности механизации?
- •В чем различие между полностью формализованным и не полностью определенным алгоритмом?
- •В чем состоит условие физической реализуемости динамической модели?
- •Виды агрегирования
- •Виды неопределённостей в измерениях
- •Внедрения результатов системного анализа
- •Возникновение и развитие системных представлений в практической деятельности человека
- •Второе определение системы
- •Выбор в условиях неопределённости
- •Выбор в условиях статистической неопределённости
- •Подведем итог
- •Выбор. Человеко-машинные системы выбора
- •Гибкость систем.
- •Групповой выбор
- •Дайте определение понятий: внешняя среда, надсистема, подведомственные системы, система в целом. Поясните их взаимосвязь
- •Дать толкование понятию «Окружающая среда»
- •Декомпозиция и агрегирование в системных исследованиях
- •Динамика моделей
- •Динамические модели системы
- •Дифференциальная энтропия
- •Достоинства и недостатки идеи оптимизации
- •Знаковые модели и сигналы
- •Знания. Разновидность знаний
- •По природе
- •По степени научности
- •По местонахождению
- •Идентификация математических моделей. Идентификация как наука.
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Иерархия моделей систем
- •Измерительные шкалы
- •Измерительные шкалы. Порядковые шкалы
- •Измерительные шкалы. Шкала наименований
- •Результаты наблюдений
- •Множество моделей-кандидатов
- •Возможные причины несоответствия моделей
- •Идентификация как наука
- •Измерительные шкалы. Шкалы отношений
- •Информационные аспекты систем
- •Искусственные и естественные системы
- •Какие системные процессы изучает кибернетика?
- •Какие системные процессы изучает синергетика?
- •Какие функции выполняет модель в деятельности человека?
- •Какова связь между вторым определением системы и ее структурной схемой?
- •Каково главное отличие между познавательной и прагматическими моделями?
- •Каковы основные события в развитии системных представлений в течении последних 150 лет?
- •Каковы особенности мышления позволяют утверждать, что оно системно?
- •Каковы причины того, что модели изменяются со временем
- •Каковы типы моделей знаний, их характеристики?
- •Каковыми признаками должна обладать часть системы, чтобы ее можно было назвать элементом?
- •Классификация систем
- •Классификация систем по описанию оператора и способу управления.
- •Классификация систем по описанию переменных
- •Классификация систем по происхождению
- •Количество информации. Свойство количества информации. Единицы измерения информации
- •Конфигуратор. Разновидности языка конфигуратора
- •Критериальный язык описания выбора Критериальный язык описания выбора
- •Математическое и компьютерное моделирование
- •Материальные модели в виде подобия
- •К условным моделям относят знаковые модели, которые подразделяются на два вида:
- •Методы генерирования альтернатив
- •Многократный выбор
- •Модели систем. Первое определение системы Модель "Черного ящика"
- •Модель состава системы
- •Структурная модель системы
- •Модель «черный ящик». Сложности построения модели «черн. Ящик»
- •Модель состава системы. Сложность построения модели состава системы
- •Модель структуры системы
- •Модель структуры системы. Сложности построения модели структуры
- •Может ли какой-нибудь объект или явление быть несистемным? Обоснуйте ответ
- •Назовите главное условие автоматизации?
- •Описание выбора на языке бинарных отношений
- •Описание ситуации в «нечетких» представлениях
- •Опишите три способа повышения производительности труда механизация
- •Автоматизация
- •Кибернетизация
- •Определите понятие модели
- •Оптимизационный выбор
- •Основные положения теории информации
- •Основные признаки развивающихся систем
- •Отношения и структуры
- •Охарактеризуйте историю развития системных представлений
- •Охарактеризуйте понятия «системный анализ» и «системный подход». В чем заключаются принципы системного подхода?
- •Первое определение системы
- •Перечислите основные признаки системы
- •Перечислить некоторые типы классификаций систем !!! Білети №52-54 !!!
- •Познавательные и прагматические модели
- •Понятие «лингвистическая модель».
- •Наиболее важные свойства моделей, в том числе лингвистических.
- •Понятие «проблемная ситуация»
- •Понятие гетерогенной и гомогенной структур систем
- •Понятие модели системы
- •2.1. Множественность моделей системы
- •2.2. Первое определение системы
- •2.2.1. Определение
- •2.2.2. Проблемы и системы
- •Существуют такие модели систем:
- •Понятие об эволюционном моделировании и генетических алгоритмах
- •Понятие субъективных и объективных целей существования систем
- •Понятие эмерджентности
- •Представление знаний
- •Приведите аргументы в пользу системности материи?
- •Пропускная способность Гауссова канала святи
- •Различие между большими и сложными системами
- •Разновидности классификаций систем
- •Разновидности неопределённостей
- •Разновидности отбора
- •Системность – всеобщее свойство материи и познания
- •Соответствие и различие между моделью и действительностью
- •Соответствие между моделью и действительностью: конечность, упрощенность, приближенность, адекватность, истинность моделей
- •Способы воплощения моделей. Абстрактные модели
- •Способы реализации моделей
- •Способы решения многокритериальных задач
- •Статистические измерения. Методы обработки экспериментальных данных
- •Статические и динамические модели
- •Структура системы. Разновидности структур систем
- •Структурная схема системы
- •Структурная схема как соединение моделей
- •Теория игр. Общее представление
- •Типы сигналов. Реализация сигналов
- •Три ветви науки, изучающие системы
- •Условия реализации свойств моделей
- •Соответствие между моделью и действительностью
- •Формальная и содержательная модели
- •Функционирование и развитие систем
- •Цель как модель
- •Частотно временное представление сигналов
- •Классические частотно-временные представления.
- •Что заставляет нас пользоваться моделями объектов вместо самих объектов?
- •Что называется алгоритмом?
- •Что необходимо для перехода от моделей лингвистических к моделям математическим?
- •Что общего и в чем различие между понятием элемента и его моделью «черного ящика»?
- •Что представляет собой сетевая структура? в каких случаях применяются сетевые структуры? Какие понятия используются при применении сетевых моделей?
- •Что такое интегрировать модели?
- •Что такое категория, функтор?
- •Что такое проблемная ситуация?
- •Что такое системный анализ?
- •Шкала интервалов
- •Шкала отношений в измерении
- •Эволюция моделей
- •Эксперимент и модель. Активный эксперимент
- •Эксперимент и модель. Пассивный эксперимент
- •Экспертный выбор
- •Энтропия и ее свойства
- •Этапы компьютерного моделирования объектов и явлений
- •Разработка компьютерной модели для проведения эксперимента:
- •Компьютерный эксперимент:
- •Этапы системного анализа
- •Этика в системном анализе
- •Язык функции выбора
- •7.6 Иллюстрация различных аксиом, накладываемых на функции выбора
Структурная модель системы
Структурную модель системы еще называют структурной схемой. На структурной схеме отражается состав системы и ее внутренние связи. Для отображения структурной схемы системы используются, например, графы.
Модель «черный ящик». Сложности построения модели «черн. Ящик»
Важную для человека роль играют наглядные, образные, визуальные модели. Перейдем от первого определения системы к его визуальному эквиваленту. Во-первых, приведенное определение ничего не говорит о внутреннем устройстве системы. Поэтому ее можно изобразить в виде непрозрачного "ящика", выделенного из окружающей среды. Подчеркнем, что уже эта, максимально простая, модель по-своему отражает два следующих важных свойства системы: целостность и обособленность от среды. Во-вторых, в определении системы косвенно говорится о том, что хотя "ящик" и обособлен, выделен из среды, но не является полностью от нее изолированным.
В самом деле, ведь достигнутая цель - это запланированные заранее изменения в окружающей среде, какие-то продукты работы системы, предназначенные для потребления вне ее. Иначе говоря, система связана со средой и с помощью этих связей воздействует на среду. Изобразим связи в виде стрелок, направленных от системы в среду. Эти связи называются выходами системы. Подчеркнем еще раз, что выходы системы в данной графической модели соответствуют слову "цель" в словесной модели (первом определении) системы.
Кроме того, в определении имеется указание и на наличие связей другого типа: система является средством, поэтому должны существовать и возможности ее использования, воздействия на нее, т.е. и такие связи со средой, которые направлены извне в систему. Изобразим эти связи также в виде соответствующих стрелок, направленных от среды в систему, и назовем их входами системы.
Главной причиной множественности входов и выходов в модель "черного ящика" является то, что всякая реальная система, как и любой объект, взаимодействует с объектами окружающей среды неограниченным числом способов.
Построение модели «черного ящика» не является тривиальной задачей, так как на вопрос о том, сколько и какие именно входы и выходы следует включать в модель, ответ не прост и не всегда однозначен. Модель типа “черный ящик” отображает только связи системы со средой, в виде перечня «входов» и «выходов». Трудность построения модели «черного ящика» состоит в том, что надо решить, какие из многочисленных реальных связей включать, а какие не включать в состав модели. Кроме того, всегда существуют и такие связи, которые нам неизвестны, но они-то и могут оказаться существенными.
Модель состава системы. Сложность построения модели состава системы
При рассмотрении любой системы прежде всего обнаруживается то, что ее целостность и обособленность (отображенные в модели черного ящика) выступают как внешние свойства. Внутренность же "ящика" оказывается неоднородной, что позволяет различать составные части самой системы. При более детальном рассмотрении некоторые части системы могут быть, в свою очередь, разбиты на составные части и т.д. Те части системы, которые мы рассматриваем как неделимые, будем называть элементами. Части системы, состоящие более чем из одного элемента, назовем подсистемами. При необходимости можно ввести обозначения или термины, указывающие на 'иерархию частей (например, "подподсистемы", или "подсистемы такого-то уровня").
В результате получается модель состава системы, описывающая, из каких подсистем и элементов она состоит
Построение модели состава системы только на первый взгляд кажется простым делом. Если дать разным экспертам задание определить состав одной и той же системы, то результаты их работы будут различаться, и иногда довольно значительно. Причины этого состоят не только в том, что у них может быть различная степень знания системы: один и тот же эксперт. При разных условиях также может дать разные модели. Существуют, по крайней мере, еще три важные причины этого факта.