Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
всё кроме 7.docx
Скачиваний:
3
Добавлен:
14.09.2019
Размер:
147.67 Кб
Скачать

25. Среднее квадратическое отклонение

Определение. Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины Х.

Выбор каждого из 1000 изделий можно считать независимым испытанием, в котором вероятность появления изделия первого сорта одинакова и равна р = 0,96.

Таким образом, закон распределения может считаться биноминальным.

Пример. Найти дисперсию дискретной случайной величины Х – числа появлений события А в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что М(Х) = 0,9.

Т.к. случайная величина Х распределена по биноминальному закону, то

Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

По формуле дисперсии биноминального закона получаем:

Пример. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно р1=0,3; p2=0,4; p3=0,5; p4=0,6. Найти математическое ожидание и дисперсию числа отказавших приборов.

Принимая за случайную величину число отказавших приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4.

Для составления закона распределения этой случайной величины необходимо определить соответствующие вероятности. Примем .

1) Не отказал ни один прибор.

2) Отказал один из приборов.

0,302.

3) Отказали два прибора.

4) Отказали три прибора.

5) Отказали все приборы. Получаем закон распределения

26. Медиана в статистке

Медиана — это такое значение признака, которое разделяет ранжированный ряд распределения на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы. Для нахождения медианы, нужно отыскать значение признака, которое находится на середине упорядоченного ряда.

Посмотреть решение задачи на нахождение моды и медианы Вы можете здесь

В ранжированных рядах несгруппированные данные для нахождения медианы сводятся к поиску порядкового номера медианы. Медиана может быть вычислена по следующей формуле:

где Хm — нижняя граница медианного интервала;

im — медианный интервал;

Sme— сумма наблюдений, которая была накоплена до начала медианного интервала;

fme — число наблюдений в медианном интервале.

Свойства медианы

Медиана не зависит от тех значений признака, которые расположены по обе стороны от нее.

Аналитические операции с медианой весьма ограничены, поэтому при объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.

Медиана обладает свойством минимальности. Его суть заключается в том, что сумма абсолютных отклонений значений х, от медианы представляет собой минимальную величину по сравнению с отклонением X от любой другой величины

Графическое определение медианы

Для определения медианы графическим методом используют накопленные частоты, по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив поп олам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

Определение моды в статистике

Мода — значение признака, имеющее наибольшую частоту в статистическом ряду распределения.

Определение моды производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды и медианы в контрольных по статистике происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее

наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой. В таком ряду распределения мода вычисляется по формуле:

где ХМо — нижняя граница модального интервала;

imo — модальный интервал;

fм0, fм0-1,, fм0+1 - частоты в модальном, предыдущем и следующем за модальным интервалах.

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при анализе покупательного спроса, регистрации цен и т. д.

Соотношения между средней арифметической, медианой и модой

Для одномодального симметричного ряда распределения средняя арифметическая, медиана и мода совпадают. Для асимметричных распределений они не совпадают.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой: