- •1.Вопросы по теме «общее представление об интеграле»
- •1.3 Определение меры
- •1.4 Дифференциал как мера
- •1.5 Интегрирование по мере
- •2Вопросы по теме « интегралы одной переменной»
- •2.1 Определение неопределенного интеграла
- •2.2 Свойство линейности для неопределенного интеграла
- •2.3 Метод интегрирования заменой переменой
- •Получение формул [править]Для неопределённого интеграла
- •[Править]для определённого интеграла
- •2.5 Интегрирование рациональных дробей Интегрирование рациональных дробей
- •2.6 Основная серия подходов для интегрировая тригонометрических выражений
- •2.8. Геометрический смысл определенного интеграла на произвольном измеримом множестве числовой прямой
- •2.9Сведение определенного интеграла к неопределенному
- •2.10 Основные типы несобственных интегралов и правил работы с ними Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •2.11 Вычисление площади фигуры с помощью определенного интеграла
- •2.12 Вычисление длины кривой, в том числе пространственной, с помощью определенного интеграла
- •2.13 Вычисление площади поверхности тела вращения с помощью определенного интеграла
- •2.15 Вычисление массы кривой с помощью определенного интеграла
- •3.Вопросы потеме «кратные интыгралы»
- •3.2 Свойство аддитивности кратного интеграла
- •3.4.Сведенья кратного интеграла к интегралам одной переменной.
- •Криволинейный интеграл первого типа (по длине дуги)
- •Криволинейный интеграл второго типа (по координатам)
- •4.3 Критерий независимости криволинейного интеграла второго типа от пути
- •1Плоский случай
- •2Пространственный случай
- •4.4 Нахождение функции по ее полному дифференциалу
- •4.5 Типы поверхностного интеграла
- •1. Поверхностные интегралы первого типа
- •4.6 Теореме дифференцирования интеграла по параметру
- •5.Вопросы по теме « общее положение о рядах»
- •5.1 Общее определение ряда
- •5.2 Определение суммы ряда.Необходимый признак сходимости ряда Определение
- •5.3Абсолютная и простая сходимлсть рядов.
- •5.6Примеры числовых, функциональных и оперативных рядов Числовые ряды
- •Функциональные ряды
- •7.1 Теорема существования радиуса сходимости у степенного ряда
- •7.2 Формулы определения радиуса сходимости
- •7.9. Ряды тейлора и маклорена для функций нескольких переменных Формула Тейлора для функции нескольких переменных
2.15 Вычисление массы кривой с помощью определенного интеграла
Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода
Если кривая C задана в параметрическом виде с помощью векторной функции , то ее масса описывается формулой
В случае плоской кривой, заданной в плоскости Oxy, масса определяется как
или в параметрической форме
2.16 понятие момента фиксированного порядка n>1, n=1 и соответствующегося ему центра у массы вдоль кривой.
Центр масс и моменты инерции кривой
Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами
где
− так называемые моменты первого порядка. Моменты инерции относительно осей Ox, Oy и Oz определяются формулами
3.Вопросы потеме «кратные интыгралы»
3.2 Свойство аддитивности кратного интеграла
Аддитивность по множеству интегрирования. Пусть множества G1 и G2 измеримы, и . Пусть также функция f определена и интегрируема на каждом из множеств G1 и G2. Тогда интеграл по G существует и равен
.
.3.3. свойство линейности для кратного интеграла
Линейность по функции. Пусть измеримо, функции и интегрируемы на , тогда
.
3.4.Сведенья кратного интеграла к интегралам одной переменной.
Кратным (n-кратным) интегралом функции на множестве называется число (если оно существует), такое что, какой бы малой -окрестностью числа мы ни задались, всегда найдется такое разбиение множества и набор промежуточных точек, что сумма произведений значения функции в промежуточной точке разбиения на меру разбиения будет попадать в эту окрестность. Формально:
: :
Здесь — мера множества .
Это определение можно сформулировать в другой форме с использованием интегральных сумм. А именно, для данного разбиения и множества точек рассмотрим интегральную сумму
Кратным интегралом функции называют предел
если он существует. Предел берётся по множеству всех последовательностей разбиений, с мелкостью стремящейся к 0. Разумеется, это определение отличается от предыдущего, по сути, лишь используемым языком.
Интеграл обозначается следующим образом:
В векторном виде: ,
Либо ставят значок интеграла раз, записывают функцию и дифференциалов: .
Для двойного и тройного интегралов используются также обозначения и соответственно.
В современных математических и физических статьях многократное использование знака интеграла не применяется.
Такой кратный интеграл называется интегралом в собственном смысле.
4.1 два типа криволинейногоинтеграла
Криволинейный интеграл первого типа (по длине дуги)
Пусть в некоторой области D плоскости хоу (см. рис. 1) задана непрерывная функция f(x, y) и гладкая незамкнутая кривая L между точками А, В.
Рис. 1
Составим интегральную сумму по уже известному алгоритму. Разобьём кривую L точками
А = А0, А1, ..., Ап = В
на п произвольных участков li, обозначив через длину i-го участка кривой между точками Аi-1, Ai, где I = 1, 2, …,п.
В каждом i-том участке выберем произвольно точку и подсчитаем в ней значение функции fi = f(Mi).
Просуммировав произведения по всем i = 1, 2, …, п, получим интегральную сумму
.
Предел этой интегральной суммы, если он существует и не зависит от типа разбиения дуги L и способа нахождения точек Mi, где i = 1, 2, …, п, называется криволинейным интегралом первого типа от функции f(x, y), взятым по кривой L, и обозначается
где .
Этому интегралу можно придать вполне определённый физический смысл: если в каждой точке дуги L задана переменная плотность - функция точки, то можно подсчитать массу материальной дуги АВ:
. (1)
Сравните с задачей о вычислении массы неоднородного стержня, приводящей к понятию определённого интеграла .