
- •1.Вопросы по теме «общее представление об интеграле»
- •1.3 Определение меры
- •1.4 Дифференциал как мера
- •1.5 Интегрирование по мере
- •2Вопросы по теме « интегралы одной переменной»
- •2.1 Определение неопределенного интеграла
- •2.2 Свойство линейности для неопределенного интеграла
- •2.3 Метод интегрирования заменой переменой
- •Получение формул [править]Для неопределённого интеграла
- •[Править]для определённого интеграла
- •2.5 Интегрирование рациональных дробей Интегрирование рациональных дробей
- •2.6 Основная серия подходов для интегрировая тригонометрических выражений
- •2.8. Геометрический смысл определенного интеграла на произвольном измеримом множестве числовой прямой
- •2.9Сведение определенного интеграла к неопределенному
- •2.10 Основные типы несобственных интегралов и правил работы с ними Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •2.11 Вычисление площади фигуры с помощью определенного интеграла
- •2.12 Вычисление длины кривой, в том числе пространственной, с помощью определенного интеграла
- •2.13 Вычисление площади поверхности тела вращения с помощью определенного интеграла
- •2.15 Вычисление массы кривой с помощью определенного интеграла
- •3.Вопросы потеме «кратные интыгралы»
- •3.2 Свойство аддитивности кратного интеграла
- •3.4.Сведенья кратного интеграла к интегралам одной переменной.
- •Криволинейный интеграл первого типа (по длине дуги)
- •Криволинейный интеграл второго типа (по координатам)
- •4.3 Критерий независимости криволинейного интеграла второго типа от пути
- •1Плоский случай
- •2Пространственный случай
- •4.4 Нахождение функции по ее полному дифференциалу
- •4.5 Типы поверхностного интеграла
- •1. Поверхностные интегралы первого типа
- •4.6 Теореме дифференцирования интеграла по параметру
- •5.Вопросы по теме « общее положение о рядах»
- •5.1 Общее определение ряда
- •5.2 Определение суммы ряда.Необходимый признак сходимости ряда Определение
- •5.3Абсолютная и простая сходимлсть рядов.
- •5.6Примеры числовых, функциональных и оперативных рядов Числовые ряды
- •Функциональные ряды
- •7.1 Теорема существования радиуса сходимости у степенного ряда
- •7.2 Формулы определения радиуса сходимости
- •7.9. Ряды тейлора и маклорена для функций нескольких переменных Формула Тейлора для функции нескольких переменных
2.2 Свойство линейности для неопределенного интеграла
Свойства первообразных и неопределённого интеграла вытекают из определения и соответствующих свойств производных.
1. Из определения вытекает, что
и
Второе равенство нужно понимать так, что производная любой из функций, составляющих неопределённый интеграл, даёт один и тот же результат, равный подынтегральной функции (это как раз и есть определение первообразной). Два написанных равенства выражают взаимную обратность операций дифференцирования и интегрирования.
2. Имеет место равенство:
где
--
произвольная постоянная. Для доказательства
обозначим через
некоторую
первообразную для
,
а через
--
некоторую первообразную для
.
Тогда равенство означает, что
,
где
--
постоянная. Это равенство верно, поскольку
производные левой и правой частей дают
одно и то же:
,
так как
--
первообразная для
,
а
,
так как постоянный множитель можно
вынести за знак производной и
.
Итак, постоянный множитель можно вынесить за знак интеграла.
3. Интеграл от суммы равен сумме интегралов:
Действительно,
пусть первообразная для
равна
,
для
равна
,
а для
равна
.
Тогда равенство означает, что
где
.
Поскольку
и
то равенство верно; при этом мы воспользовались тем, что производная суммы равна сумме производных.
Свойства
2 и 3 называются свойствами линейности неопределённого
интеграла.
Из них следует, что для любых постоянных
и
и, в частности,
2.3 Метод интегрирования заменой переменой
Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть
требуется вычислить интеграл
Сделаем
подстановку
где
—
функция, имеющая непрерывную производную.
Тогда
и
на основании свойства инвариантности
формулы интегрирования неопределенного
интеграла получаем формулу
интегрирования подстановкой:
2.4 Интегри́рование по частя́м — один из способов нахождения интеграла. Суть метода в следующем: если подынтегральная функция может быть представлена в виде произведения двух непрерывных и гладких функций (каждая из которых может быть как элементарнойфункцией, так и композицией), то справедливы следующие формулы
для неопределённого интеграла:
для определённого:
Предполагается,
что нахождение интеграла
проще,
чем
.
В противном случае применение метода
неоправдано.
Получение формул [править]Для неопределённого интеграла
Функции
и
гладкие,
следовательно, возможно дифференцирование:
Эти функции также непрерывны, значит можно взять интеграл от обеих частей равенства:
Операция интегрирования обратна дифференцированию:
После перестановок:
Не стоит, однако, забывать, что это равенство подразумевается в смысле равенства множеств, то есть, грубо говоря, с точностью до константы, возникающей во время интегрирования.
Типичную ошибку «потери» константы при обращении с неопределенным интегралом иллюстрирует следующий пример-софизм:
Отсюда
«следствие»:
,
что очевидно неверно.