
- •Алициклические углеводороды
- •Моноциклические насыщенные углеводороды (циклопарафины, циклоалканы, полиметиленовые углеводороды)
- •Номенклатура циклопарафинов
- •Изомерия циклопарафинов
- •Соединения с четырех- и пятичленными кольцами
- •Соединения ряда циклогексана
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Химические свойства соединений с трехчленными циклами
- •1.Реакции присоединения
- •Химические свойства циклобутана и его гомологов
- •2.Окисление
- •3.Реакции термического разложения
- •4.Реакции присоединения
- •Взаимные превращения циклов
- •Способы получения
- •Химические свойства
- •Отличительные реакции
- •2.Отличительные особенности химических свойств циклопентадиена.
- •Ароматические соединения
- •Основные признаки ароматичности
- •Ароматические соединения
- •1 Группа – ароматические соединения бензоидного строения (ароматические углеводороды)
- •Отличительные особенности химического поведения ароматических углеводородов
- •Гомологический ряд, изомерия и номенклатура ароматических углеводородов
- •Названия ароматических радикалов
- •Способы получения ароматических углеводородов
- •Химические превращения углеводородов в процессе ароматизации
- •Б. Синтетические способы получения ароматических углеводородов
- •Физические свойства ароматических углеводородов
- •Химические свойства
- •Механизм электрофильного замещения
- •I. Реакции электрофильного замещения в ароматическом ядре
- •Правила электрофильного замещения в ароматическом ядре
- •Нитрование гомологов бензола
- •Реакции присоединения (нетипичны)
- •Галоидпроизводные ароматических углеводородов Классификация, изомерия, номенклатура
- •Получение
- •Физические свойства галогенопроизводных ароматических углеводородов
- •Химические свойства
- •Физические свойства
- •Химические свойства
- •I тип реакций. Реакции, характерные для органических кислот.
- •II тип реакции. Восстановление сульфогруппы
- •III тип реакций. Реакции нуклеофильного замещения сульфогруппы
- •IV тип реакций. Реакции электрофильного замещения в ядре идут в соответствии с правилами замещения
- •Нитросоединения ароматического ряда
- •1.Нитросоединения с нитрогруппой в ядре
- •Физические свойства
- •Химические свойства
- •II. Реакции в ядре
- •II. Нитросоединения с группой no2 в боковой цепи
- •Способы получения
- •Химические свойства ароматических нитросоединений с группой no2 в боковой цепи
- •Ароматические амины Классификация
- •I. По положению аминогруппы относительно ароматического ядра.
- •II. По количеству радикалов, связанных с азотом
- •III. По количеству аминогрупп
- •Получение
- •Физические свойства
- •Химические свойства
- •II. Реакции замещения водорода в аминогруппе
- •IV. Окисление
- •V. Реакции замещения в ароматическом ядре
- •Механизм реакции галоидирования
- •VI. Реакции конденсации ароматических аминов с другими органическими и неорганическими соединениями
- •Диазо- и азосоединения
- •Ароматические диазосоединения
- •Способы получения
- •1. Реакция диазотирования - -получение солей диазония.
- •Таутомерия и физические свойства ароматических диазосоединений
- •Химические свойства солей диазония
- •I. Реакции с выделением азота
- •II. Реакции диазосоединений без выделения азота
- •Азокрасители
- •Связь строения с цветностью
- •Индикаторные свойства азокрасителей
- •Ароматические оксисоединения
- •Классификация
- •Способы получения
- •Физические свойства фенолов
- •Химически свойства фенолов
- •I. Реакции подвижного водорода в группе он
- •II. Реакции электрофильного замещения в ядре
- •III. Окислительно-восстановительные реакции
- •IV. Конденсация фенолов с другими органическими соединениями
- •Ароматические спирты
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Ароматические альдегиды и кетоны
- •Способы получения
- •II. Частные способы получения альдегидов и кетонов
- •Физические свойства
- •Химические свойства
- •Отдельные представители альдегидов
- •Отдельные представители кетонов
- •Ароматические кислоты
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Двухосновные ароматические кислоты
- •Другие поликарбоновые ароматические кислоты
- •Полициклические ароматические углеводороды и их производные
- •Ароматические углеводороды с изолированными ядрами
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Наиболее важные группы многоядерных соединений. Группа дифенила
- •Группа трифеиилметана
- •Красители типа трифенилметана
- •Полициклические ароматические углеводороды с конденсированными ядрами
- •Получение
- •Физические свойства
- •Особенности химических свойств
- •Аминопроизводные нафталина
- •Гетероциклические соединения
- •Ароматические гетероциклические соединения
- •Ароматические моноциклические пятичленные гетероциклы
- •Номенклатура гетероциклических соединений
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Пятичленные гетероциклы с несколькими гетероатомами
- •Получение
- •Отличительные особенности свойств
- •Бициклические соединения с пятичленными гетероциклами
- •Получение инденкумароновых смол
- •Химические свойства
- •Значение
- •Применение и значение пятичленных гетероциклических соединений
- •Шестичленные гетероциклы с одним гетероатомом
- •Получение
- •Реакционноспособность некоторых заместителей в пиридиновом кольце
- •Получение
- •Понятие об алкалоидах
Другие поликарбоновые ароматические кислоты
Имеют меньшее значение.
Так, например, из малонового альдегида образуется 1,3,5-бензолтрикарбоновая (тримезиновая кислота).
|
-3H2O |
|
KMnO4
|
|
|
|
|
1,3,5-бензолтрикарбоновая кислота (тримезиновая кислота, т.к. может образовываться при окислении мезитилена, который получают из метилацетилена).
При окислении графита азотной кислотой образуется меллитовая кислота, бензолгексакарбоновая кислота.
|
HNO3
|
|
|
|
меллитовая кислота (название от минерала меллита, алюминиевой соли этой кислоты) |
Эта реакция показывает, что графит построен из полимерноконденсированных ароматических колец.
Полициклические ароматические углеводороды и их производные
Делятся на два типа.
Соединения с изолированными ядрами (многоядерные).
Соединения с конденсированными ядрами.
Ароматические углеводороды с изолированными ядрами
Имеют два или несколько бензольных колец, соединенных между собой посредством простых связей или посредством других углеродных атомов. Например,
|
Дифенил |
|
2,4/-диметилдифенил |
|
Дифенилметан |
|
П,п/-диоксидифенилметан; бис(2-оксифенил)метан; 4,4?-метиленбисфенол |
|
Трифенилметан |
C6H5-CH2-CH2-C6H5 |
Sim-1,2-дифенилэтан |
|
Asim-дифенилэтан |
|
Гексафенилэтан |
Способы получения
Основаны, главным образом, на использовании реакций вюрца-Фиттига и Фриделя-Крафтса. Эти реакции имеют здесь определенное ограничение:
Реакция Вюрца идет только с иодарилами.
2 C6H5I + 2 Na C6H5-C6H5 + 2 NaI
2) Для получения многоядерных углеводородов с помощью реакции Фриделя-Крафтса необходимо использовать полигалогенопроизводные углеводородов.
3 |
|
AlCl3 + CHCl3 (C6H5)3CH -3 HCl |
|
хлороформ |
трифенилметан |
Физические свойства
Бесцветные вязкие жидкости или кристаллические термостойкие вещества, нерастворимые в воде.
Химические свойства
Проявляют типичные свойства ароматических углеводородов.
Особенности:
1) Реакции электрофильного замещения в ядре идут труднее, чем у одноядерных (при более жестких условиях). Заместители становятся в основном в положение пар- или орто- (если пара-положение заняты).
Реакции связующего звена.
Атомы водорода, расположенные в -положении к нескольким ядрам, обладают большей подвижностью и очень легко подвергаются замещению по различным механизмам.
С6H5-СH2-C6H5 + 2 Cl2 C6H5-CCl2-C6H5 + 2 HCl
дифенилметан дихлордифенилметан
С6H5-СH2-C6H5 + O2 |
|
+ H2O |
|
дифенилкетон (ацетофенон) |
|