
- •2.1 Определение неопределенного интеграла
- •2.2 Свойство линейности для неопределенного интеграла
- •2.3 Метод интегрирования заменой переменой
- •Получение формул [править]Для неопределённого интеграла
- •[Править]для определённого интеграла
- •2.5 Интегрирование рациональных дробей Интегрирование рациональных дробей
- •2.6 Основная серия подходов для интегрировая тригонометрических выражений
- •3.4.Сведенья кратного интеграла к интегралам одной переменной.
- •3.3. Свойство линейности для кратного интеграла
- •Криволинейный интеграл первого типа (по длине дуги)
- •Криволинейный интеграл второго типа (по координатам)
- •1Плоский случай
- •2Пространственный случай
- •4.4 Нахождение функции по ее полному дифференциалу
- •5.2 Определение суммы ряда.Необходимый признак сходимости ряда Определение
- •5.3Абсолютная и простая сходимлсть рядов.
- •7.1 Теорема существования радиуса сходимости у степенного ряда
- •7.2 Формулы определения радиуса сходимости
- •7.9. Ряды тейлора и маклорена для функций нескольких переменных Формула Тейлора для функции нескольких переменных
2.1 Определение неопределенного интеграла
Дадим строгое математическое определение понятия неопределенного интеграла.
Выражение
вида
называется интегралом
от функции f(x),
где f(x) -
подынтегральная функция, которая
задается (известная), dx -
дифференциал x,
с символом
всегда
присутствует dx.
Определение. Неопределенным
интегралом
называется
функция F(x)
+ C,
содержащая произвольное постоянное C,
дифференциал которой
равенподынтегральному выражению f(x)dx,
т.е.
или
Функцию
называют первообразной
функции
.
Первообразная функции
определяется
с точностью до постоянной величины.
Напомним,
что
-дифференциал
функции
и
определяется следующим образом:
Задача нахождения неопределенного интеграла заключается в нахождении такой функции,производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю.
Например,
известно, что
,
тогда получается, что
,
здесь
-
произвольная постоянная.
Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы снеопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.
2.2 Свойство линейности для неопределенного интеграла
Свойства первообразных и неопределённого интеграла вытекают из определения и соответствующих свойств производных.
1. Из определения вытекает, что
и
Второе равенство нужно понимать так, что производная любой из функций, составляющих неопределённый интеграл, даёт один и тот же результат, равный подынтегральной функции (это как раз и есть определение первообразной). Два написанных равенства выражают взаимную обратность операций дифференцирования и интегрирования.
2. Имеет место равенство:
где
--
произвольная постоянная. Для доказательства
обозначим через
некоторую
первообразную для
,
а через
--
некоторую первообразную для
.
Тогда равенство означает, что
,
где
--
постоянная. Это равенство верно, поскольку
производные левой и правой частей дают
одно и то же:
,
так как
--
первообразная для
,
а
,
так как постоянный множитель можно
вынести за знак производной и
.
Итак, постоянный множитель можно вынесить за знак интеграла.
3. Интеграл от суммы равен сумме интегралов:
Действительно,
пусть первообразная для
равна
,
для
равна
,
а для
равна
.
Тогда равенство означает, что
где
.
Поскольку
и
то равенство верно; при этом мы воспользовались тем, что производная суммы равна сумме производных.
Свойства
2 и 3 называются свойствами линейности неопределённого
интеграла.
Из них следует, что для любых постоянных
и
и, в частности,
2.3 Метод интегрирования заменой переменой
Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть
требуется вычислить интеграл
Сделаем
подстановку
где
—
функция, имеющая непрерывную производную.
Тогда
и
на основании свойства инвариантности
формулы интегрирования неопределенного
интеграла получаем формулу
интегрирования подстановкой:
2.4 Интегри́рование по частя́м — один из способов нахождения интеграла. Суть метода в следующем: если подынтегральная функция может быть представлена в виде произведения двух непрерывных и гладких функций (каждая из которых может быть как элементарнойфункцией, так и композицией), то справедливы следующие формулы
для неопределённого интеграла:
для определённого:
Предполагается,
что нахождение интеграла
проще,
чем
.
В противном случае применение метода
неоправдано.